kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3)) morph = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel)
时间: 2024-05-20 18:12:02 浏览: 167
这段代码使用OpenCV的函数对二值图像进行形态学操作,其中cv2.getStructuringElement函数用于获取结构元素,结构元素可以看做是一个小的图形模板,用于对二值图像进行形态学操作。这里获取的结构元素是一个矩形,大小为(3,3)。
接下来,cv2.morphologyEx函数将获取的结构元素应用于二值图像thresh上,使用cv2.MORPH_OPEN进行开运算操作,开运算是形态学操作中的一种,它可以去除图像中的小噪点或者小物体,同时保留图像中较大的物体的形状和大小不变。最后得到的morph是经过开运算操作后的二值图像。
相关问题
def find_center(img): h, w = img.shape roi_h = int(h * 2 / 3) roi_img = img[roi_h:, :] img_blur = cv2.GaussianBlur(roi_img, (15, 15), 0) # 高斯模糊 ret, th2 = cv2.threshold(img_blur, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU) g2 = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3)) open_img = cv2.morphologyEx(th2, cv2.MORPH_OPEN, g2, iterations=3) x_sum = np.sum(open_img, axis=0) x_point = np.where(x_sum > 0) point_x = int((x_point[0][0] + x_point[0][-1]) / 2) # print(roi_h, w) # np.savetxt('reshape_data.txt', x_point, delimiter=' ', fmt='%i') return point_x c++ Eigen opencv
这段代码是一个Python函数,用于从一张图像中找到中心点的x坐标。其中使用了OpenCV库中的一些函数进行图像处理。
如果需要将这段代码转化为C++代码,可以使用Eigen和OpenCV库来实现:
```c++
#include <opencv2/opencv.hpp>
#include <Eigen/Core>
int find_center(cv::Mat img) {
int h = img.rows;
int w = img.cols;
int roi_h = h * 2 / 3;
cv::Mat roi_img = img(cv::Rect(0, roi_h, w, h - roi_h));
cv::Mat img_blur;
cv::GaussianBlur(roi_img, img_blur, cv::Size(15, 15), 0);
cv::Mat th2;
cv::threshold(img_blur, th2, 0, 255, cv::THRESH_BINARY + cv::THRESH_OTSU);
cv::Mat g2 = cv::getStructuringElement(cv::MORPH_RECT, cv::Size(3, 3));
cv::Mat open_img;
cv::morphologyEx(th2, open_img, cv::MORPH_OPEN, g2, cv::Point(-1, -1), 3);
Eigen::MatrixXi open_mat(h - roi_h, w);
for (int i = 0; i < h - roi_h; i++) {
for (int j = 0; j < w; j++) {
open_mat(i, j) = open_img.at<uchar>(i, j);
}
}
Eigen::VectorXi x_sum(w);
for (int i = 0; i < w; i++) {
x_sum(i) = open_mat.col(i).sum();
}
Eigen::ArrayXi x_point = (x_sum.array() > 0).select(Eigen::ArrayXi::LinSpaced(w, 0, w - 1), -1);
int point_x = (x_point(0) + x_point(w - 1)) / 2;
return point_x;
}
```
注意,此处使用了Eigen库来进行矩阵计算,需要在代码中引入相应的头文件和命名空间。同时,将OpenCV中的Mat转换为Eigen库中的Matrix类型,需要使用循环将每个像素的值拷贝到矩阵中。
def Process(img): # 高斯平滑 gaussian = cv2.GaussianBlur(img, (3, 3), 0, 0, cv2.BORDER_DEFAULT)#高斯模糊函数 median = cv2.medianBlur(gaussian, 5)#中值滤波 sobel = cv2.Sobel(median, cv2.CV_8U, 1, 0, ksize=3)#Sobel算子,梯度方向是X # 二值化 ret, binary = cv2.threshold(sobel,200, 255, cv2.THRESH_BINARY)#cv2简单阙值函数 # 核函数 element1 = cv2.getStructuringElement(cv2.MORPH_RECT, (9, 1))#得到一个结构元素(卷积核)。主要用于后续的腐蚀、膨胀等运算。 element2 = cv2.getStructuringElement(cv2.MORPH_RECT, (9, 7)) dilation = cv2.dilate(binary, element2, iterations=1)#膨胀函数 # 腐蚀 erosion = cv2.erode(dilation, element1, iterations=1) # 膨胀 dilation2 = cv2.dilate(erosion, element2, iterations=3) return dilation2 def GetRegion(img): regions = [] # 查找轮廓 contours, hierarchy = cv2.findContours(img, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)#检测图像中物体轮廓 for contour in contours: area = cv2.contourArea(contour)#计算轮廓面积 if (area<2000): continue eps = 0.001* cv2.arcLength(contour, True)#计算封闭轮廓或者曲线的长度 approx = cv2.approxPolyDP(contour, eps, True)#轮廓多边形逼近 rect = cv2.minAreaRect(contour)#求最小面积矩形框 box = cv2.boxPoints(rect)#获取最小面积矩形框的四个顶点坐标 box = np.int0(box)#整型化 height = abs(box[0][1] - box[2][1]) width = abs(box[0][0] - box[2][0]) ratio =float(width) / float(height) if (ratio < 5 and ratio > 1.8): regions.append(box) return regions def detect(img): gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)#图片灰度化 prc = Process(gray) regions = GetRegion(prc) print('[INFO]:Detect %d license plates' % len(regions)) for box in regions: cv2.drawContours(img, [box], 0, (0, 0,255), 2) cv2.imwrite(r'C:\Users\86182\Pictures\Saved Pictures\test.png', img) cv2.waitKey(0) cv2.destroyAllWindows()该代码在实现车牌区域检测的过程中用到了什么算法
这段代码实现车牌区域检测主要用到了以下算法:
1. 高斯平滑(GaussianBlur)和中值滤波(medianBlur):用于平滑图像,减少噪声的影响。
2. Sobel算子(Sobel):用于检测图像边缘。
3. 二值化(threshold):将图像转换为黑白两色,方便后续处理。
4. 膨胀(dilate)和腐蚀(erode):用于调整图像形态,填补边缘空洞,去除小的噪点等。
5. 轮廓查找(findContours)和轮廓逼近(approxPolyDP):用于识别图像中的轮廓,并将其逼近为多边形。
6. 最小面积矩形框(minAreaRect):用于求出包含轮廓的最小面积矩形框。
7. 整型化(np.int0):将浮点型数据转换为整型数据。
8. 输出识别到的车牌数量,并将标记后的图像保存在本地。
阅读全文