one = np.ones((x.shape[0],1)) X = np.hstack((x,one))这部分代码什么意思
时间: 2024-04-05 20:34:10 浏览: 108
这部分代码是在将一个二维的Numpy数组x的每一行末尾添加上一个值为1的元素,然后按列连接起来,得到一个新的二维Numpy数组X。这个新的数组X用来进行线性回归的计算,将自变量的系数和截距放在一起,方便计算。具体来说,这个代码的作用是在X中添加一个全为1的列,相当于在原来的自变量基础上添加了一个常数项,以便在线性回归中计算截距。
相关问题
X_train = np.hstack([X_train, np.ones((X_train.shape[0], 1))]) X_val = np.hstack([X_val, np.ones((X_val.shape[0], 1))]) X_test = np.hstack([X_test, np.ones((X_test.shape[0], 1))]) X_dev = np.hstack([X_dev, np.ones((X_dev.shape[0], 1))])
这段代码是在将训练数据集、验证数据集、测试数据集和开发数据集的特征矩阵中添加一列全为1的偏置列,以便进行线性回归模型的训练。其中,np.hstack()函数是将两个矩阵按水平方向拼接起来,np.ones()函数生成一个全为1的矩阵,其形状为(X.shape[0],1)。因此,代码中的np.ones((X_train.shape[0], 1))就是一个形状为(X_train.shape[0],1)的全为1的矩阵,通过np.hstack()函数与X_train拼接在一起,形成了一个新的特征矩阵。同理,对其余的数据集也执行了相同的操作。
y1 = np.zeros(x1.shape[0]) y2 = np.ones(x2.shape[0]) y3 = np.full(x3.shape[0], 2) y4 = np.full(x4.shape[0], 3) y5 = np.full(x5.shape[0], 4)
These lines of code create five different arrays, each filled with a different constant value. The length of each array corresponds to the length of a different input array (x1, x2, x3, x4, x5).
- y1 is an array of zeros, with the same length as x1.
- y2 is an array of ones, with the same length as x2.
- y3 is an array filled with the constant value 2, with the same length as x3.
- y4 is an array filled with the constant value 3, with the same length as x4.
- y5 is an array filled with the constant value 4, with the same length as x5.
阅读全文