请解释以下代码:edges_unordered = np.genfromtxt(path, dtype=np.int32) edges = np.array(list(map(idx_map.get, edges_unordered.flatten())), dtype=np.int32).reshape(edges_unordered.shape) adj = sp.coo_matrix((np.ones(edges.shape[0]), (edges[:, 0], edges[:, 1])), shape=(n, n), dtype=np.float32)
时间: 2023-05-29 08:03:13 浏览: 245
这段代码的功能是将一个存储有无序边的文件读入,并将其转换为一个稀疏的邻接矩阵。
具体地,该代码的执行过程如下:
1. 使用NumPy的`genfromtxt`函数从指定路径的文件中读入数据,数据类型为32位整数数组,赋值给变量`edges_unordered`。
2. 将`edges_unordered`数组展平成一维数组,并使用`map`函数对每个节点编号进行映射,将其转换为对应的索引值。映射关系保存在`idx_map`字典中。将映射后的一维数组转换为32位整数数组,并按照`edges_unordered`的形状重新reshape为二维数组,赋值给变量`edges`。
3. 利用NumPy的`ones`函数生成一个长度为`edges.shape[0]`的一维数组,元素值全为1。使用`edges`数组中的节点索引和该一维数组中的1值创建一个稀疏的COO格式矩阵,表示邻接矩阵。该矩阵的形状为`(n, n)`,数据类型为32位浮点数,赋值给变量`adj`。
最终,`adj`就是一个表示无向图邻接矩阵的稀疏矩阵,其中每个元素表示两个节点之间是否存在一条边。
相关问题
请解释以下代码: data = np.loadtxt('data/{}.txt'.format(dataset)) n, _ = data.shape idx = np.array([i for i in range(n)], dtype=np.int32) idx_map = {j: i for i, j in enumerate(idx)} edges_unordered = np.genfromtxt(path, dtype=np.int32) edges = np.array(list(map(idx_map.get, edges_unordered.flatten())), dtype=np.int32).reshape(edges_unordered.shape) adj = sp.coo_matrix((np.ones(edges.shape[0]), (edges[:, 0], edges[:, 1])), shape=(n, n), dtype=np.float32)
这段代码用于读取一个文本文件,并生成一个稀疏矩阵,表示一个无向图的邻接矩阵。
具体解释如下:
1. `data = np.loadtxt('data/{}.txt'.format(dataset))`:读取文件,文件路径由变量`dataset`指定,将文件中的数据加载到一个 NumPy 数组 `data` 中。
2. `n, _ = data.shape`:获取 `data` 数组的形状,`n` 为数组的行数,表示节点的数量。
3. `idx = np.array([i for i in range(n)], dtype=np.int32)`:生成一个长度为 `n` 的一维数组 `idx`,其中每个元素代表一个节点的编号。
4. `idx_map = {j: i for i, j in enumerate(idx)}`:生成一个字典 `idx_map`,用于将节点编号映射为数组 `data` 中的行索引。
5. `edges_unordered = np.genfromtxt(path, dtype=np.int32)`:从文件中读取边的数据,将数据加载到一个 NumPy 数组 `edges_unordered` 中,每行代表一条边,每列为边的两个端点的节点编号。
6. `edges = np.array(list(map(idx_map.get, edges_unordered.flatten())), dtype=np.int32).reshape(edges_unordered.shape)`:将边的节点编号转换为数组 `data` 中的行索引,生成一个二维数组 `edges`,每行代表一条边,每列为边的两个端点的行索引。
7. `adj = sp.coo_matrix((np.ones(edges.shape[0]), (edges[:, 0], edges[:, 1])), shape=(n, n), dtype=np.float32)`:生成一个稀疏矩阵 `adj`,其中每个元素表示两个节点之间是否有边,如果有边则为 1,否则为 0。这里使用了 SciPy 中的 `coo_matrix` 函数,第一个参数是一个元组,表示每个非零元素的值和对应的行、列索引,第二个参数表示矩阵的形状,第三个参数表示数据类型。
如果要等价实现下列代码,应该如何更改def edge_detection(image, type): if type == 'roberts': roberts_x = np.array([[-1, 0], [0, 1]]) roberts_y = np.array([[0, -1], [1, 0]]) # roberts 算子计算x和y方向的梯度 gradient_x_roberts = cv2.filter2D(image, -1, roberts_x) gradient_y_roberts = cv2.filter2D(image, -1, roberts_y) edges_roberts = cv2.add(np.abs(gradient_x_roberts), np.abs(gradient_y_roberts)) edges_roberts = np.uint8(edges_roberts) return edges_roberts elif type == 'prewitt': prewitt_x = np.array([[-1, 0, 1], [-1, 0, 1], [-1, 0, 1]]) prewitt_y = np.array([[-1, -1, -1], [0, 0, 0], [1, 1, 1]]) # prewitt 算子计算x和y方向的梯度 gradient_x_prewitt = cv2.filter2D(image, -1, prewitt_x) gradient_y_prewitt = cv2.filter2D(image, -1, prewitt_y) edges_prewitt = cv2.add(np.abs(gradient_x_prewitt), np.abs(gradient_y_prewitt)) edges_prewitt = np.uint8(edges_prewitt) return edges_prewitt elif type == 'sobel': # Sobel算子 sobel_x = np.array([[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]]) sobel_y = np.array([[-1, -2, -1], [0, 0, 0], [1, 2, 1]]) # Sobel 算子计算x和y方向的梯度 gradient_x_sobel = cv2.filter2D(image, -1, sobel_x) gradient_y_sobel = cv2.filter2D(image, -1, sobel_y) edges_sobel = cv2.add(np.abs(gradient_x_sobel), np.abs(gradient_y_sobel)) edges_sobel = np.uint8(edges_sobel) return edges_sobel elif type == 'canny': edges = cv2.Canny(image, threshold1=50, threshold2=100) return edges else: raise NotImplementedError
为了实现等价功能,可以使用下列代码:
```python
def edge_detection(image, type):
if type == 'roberts':
roberts_x = np.array([[-1, 0], [0, 1]])
roberts_y = np.array([[0, -1], [1, 0]])
gradient_x_roberts = conv2d(image, roberts_x)
gradient_y_roberts = conv2d(image, roberts_y)
edges_roberts = np.abs(gradient_x_roberts) + np.abs(gradient_y_roberts)
edges_roberts = np.uint8(edges_roberts)
return edges_roberts
elif type == 'prewitt':
prewitt_x = np.array([[-1, 0, 1], [-1, 0, 1], [-1, 0, 1]])
prewitt_y = np.array([[-1, -1, -1], [0, 0, 0], [1, 1, 1]])
gradient_x_prewitt = conv2d(image, prewitt_x)
gradient_y_prewitt = conv2d(image, prewitt_y)
edges_prewitt = np.abs(gradient_x_prewitt) + np.abs(gradient_y_prewitt)
edges_prewitt = np.uint8(edges_prewitt)
return edges_prewitt
elif type == 'sobel':
sobel_x = np.array([[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]])
sobel_y = np.array([[-1, -2, -1], [0, 0, 0], [1, 2, 1]])
gradient_x_sobel = conv2d(image, sobel_x)
gradient_y_sobel = conv2d(image, sobel_y)
edges_sobel = np.abs(gradient_x_sobel) + np.abs(gradient_y_sobel)
edges_sobel = np.uint8(edges_sobel)
return edges_sobel
elif type == 'canny':
edges = cv2.Canny(image, threshold1=50, threshold2=100)
return edges
else:
raise NotImplementedError
```
主要的改动在于使用了自定义的 `conv2d` 函数替换了原来的 `cv2.filter2D` 函数。由于 `cv2.filter2D` 函数的实现方式与 `conv2d` 函数有所不同,因此替换后需要重新计算梯度,并对梯度进行绝对值处理和类型转换。
阅读全文