TypeError: minimize() missing 1 required positional argument: 'var_list'
时间: 2023-10-21 15:05:37 浏览: 116
This error occurs when the `minimize` function is called without providing the required argument `var_list`.
The `minimize` function is used to minimize a scalar function of one or more variables using optimization algorithms. The `var_list` argument is used to specify the variables that the function should be minimized with respect to.
To fix this error, make sure to provide the `var_list` argument when calling the `minimize` function. The `var_list` argument should be a list of variables that the function should be minimized with respect to.
Here is an example of how to use the `minimize` function with the `var_list` argument:
```
import tensorflow as tf
# Define the function to be minimized
def f(x, y):
return x**2 + y**2
# Define the variables to be minimized with respect to
x = tf.Variable(1.0)
y = tf.Variable(2.0)
var_list = [x, y]
# Define the optimizer
optimizer = tf.optimizers.Adam()
# Minimize the function
minimizer = optimizer.minimize(lambda: f(x, y), var_list=var_list)
# Run the minimizer
for i in range(100):
minimizer.run()
# Print the final values of x and y
print("x =", x.numpy())
print("y =", y.numpy())
```
阅读全文