若栈采用顺序存储方式存储,现两栈共享空间v[m]:top[i]代表第i(i=1或2)个栈的栈顶;栈1的底在v[0],栈2的底在v[m-1],则栈满的条件是:
时间: 2023-05-31 14:18:24 浏览: 492
栈的Java语言实现
### 回答1:
\u5982\u679c\u4f7f\u7528\u987a\u5e8f\u5b58\u50a8\u65b9\u5f0f\u5b58\u50a8\u82e5\u6808\uff0c\u5219\u73b0\u4e24\u6808\u7684\u6574\u4e2a\u5143\u7d20\u4f1a\u5171\u4eab\u540c\u4e00\u4e2a\u7a7a\u95f4v\uff0c\u4e14\u82e5\u68081\u7684\u5e95\u5728v[0]\uff0c\u68082\u7684\u5e95\u5728v[m-1]\uff0c\u5219\u53ef\u4ee5\u5bf9\u5e94\u7684\u6808\u9876i\u5904\u7684\u5143\u7d20\u8fdb\u884c\u64cd\u4f5c\uff0c\u5b58\u50a8\u548c\u53d6\u51fa\u6570\u636e\u3002
\u4e0d\u8fc7\uff0c\u9700\u8981\u6ce8\u610f\u7684\u662f\uff0c\u82e5\u4f7f\u7528\u987a\u5e8f\u5b58\u50a8\u65b9\u5f0f\u5b58\u50a8\u82e5\u6808\uff0c\u4e00\u5b9a\u8981\u786e\u4fdd\u68081\u7684\u5e95\u5728v[0]\uff0c\u68082\u7684\u5e95\u5728v[m-1]\uff0c\u8fd9\u6837\u624d\u80fd\u8f6c\u6362\u6808\u9876i\u5904\u7684\u5143\u7d20\u3002
### 回答2:
当两个栈的元素总数相加等于共享空间v的大小m时,两栈共享空间v[m]就满了。因为两个栈共享同一个存储空间,每个栈的元素个数不能超过v的一半,即每个栈的元素个数不能超过m/2。所以,当一个栈的元素个数已满,另一个栈也就不能再继续插入元素了,因为两个栈的元素总数已经等于m了,此时栈满的条件就被满足了。
具体来说,我们以栈1和栈2的元素个数分别为n1和n2为例,公式表示如下:
n1 + n2 = m,其中n1 <= m / 2,n2 <= m / 2
假设栈1的底在v[0],栈2的底在v[m-1],则栈1的栈顶top[1]为v[n1-1],而栈2的栈顶top[2]为v[m-n2]。当两栈共享空间v[m]满时,意味着栈1底部和栈2底部之间已经没有空闲空间了,此时栈1和栈2都不能再插入元素。
在栈的顺序存储结构中,当栈满时,再进行插入操作就会导致栈上溢。因此,在实际应用中,需要注意及时对栈进行扩容或者避免向已满的栈中插入元素。
### 回答3:
在顺序存储方式下,栈是一种后进先出(Last In First Out)的数据结构,一般采用数组来实现。如果两个栈共享一个数组,那么我们就要特别处理它们的容量,以确保两个栈不会发生溢出。假设两个栈共享一个长度为m的数组v,在这个数组中,栈1的底部在v[0],栈2的底部在v[m-1]。现在的问题是:什么条件下,这个共享数组的栈才会满?
首先,我们需要明确栈满的定义。在顺序存储方式下,如果一个栈的栈顶指针等于数组的最后一个元素的下标,那么这个栈就已经满了。因为只有在这种情况下,再次入栈时才会发生数组越界的问题。
接下来,我们来看两个栈共享的情况。由于两个栈的底部在数组的两端,它们的栈顶指针也是相向而行的。如果此时两个栈的栈顶指针相遇了,那么就会发生溢出。因此,这个共享数组的栈满的条件是:当第一个栈的栈顶指针top[1]等于第二个栈的栈顶指针top[2]-1时,此时两个栈的栈顶指针相遇,即:
top[1] == top[2]-1
这时,无论是向第一个栈还是第二个栈中入栈元素,都会发生溢出。因此,我们在实现共享栈时,需要特别注意它们的栈顶指针和容量的限制,以免造成数据结构的破坏和程序的崩溃。
阅读全文