#include <REG52.H> void Delay100ms() //@11.0592MHz { unsigned char i, j, k; i = 5; j = 52; k = 195; do { do { while (--k); } while (--j); } while (--i); } void main() { while(1) { P1 = 0; Delay100ms(); P1=0xff; } }这串代码能实现单片机上的LED灯闪烁?
时间: 2023-12-08 07:06:33 浏览: 82
可以的,这段代码可以让单片机上的P1口的LED灯每100毫秒闪烁一次。具体实现是通过不断地让P1口的值在0x00和0xff之间切换,同时调用Delay100ms函数来控制LED灯的亮灭时间。需要注意的是,这段代码是基于11.0592MHz的晶振频率编写的,如果使用其他频率的晶振可能需要进行相应的修改。
相关问题
嵌入式结课作业:《基于Keil和proteus的以AT89C51为核心流水灯》 (#include<reg51.h>void delay(unsigned int i);main(){while(1){P2 = 0x00;delay(600);P2 = 0xff;delay(600);}}void delay(unsigned int i){unsigned char j;for(i; i > 0; i--)for(j = 255; j >0; j--);}proteus的AT89C51、8个LED-RED、1N4148、3WATT10K、BUTTON、CRYSTAL、GENELECT33U16V、POLYPRO22P、RESPACK—8)项目实现(电路图运行原理讲解)
这是一个基于AT89C51单片机的流水灯项目,使用的是Keil和Proteus两个软件进行开发和仿真。
首先我们要了解AT89C51单片机,它是一款具有高性能、低功耗、易于编程的8位微控制器,广泛应用于各种嵌入式系统中。在这个项目中,我们使用它作为整个流水灯系统的核心。
在电路图中,我们可以看到一个AT89C51单片机,它的晶振频率为11.0592MHz,通过晶振可以提供一个精准的时钟信号,让单片机能够按照我们的程序进行运行。同时,在单片机的P2口连接了8个LED灯,用来实现流水灯的效果。
在程序中,我们首先将P2口的输出值设置为0x00,即所有LED都熄灭,然后延时600ms,再将P2口的输出值设置为0xff,即所有LED都点亮,再延时600ms,这样就完成了一次流水灯的循环。其中的delay函数用来实现延时,它的原理是通过一个双重循环来占用CPU的时间,从而实现延时的效果。
整个系统的工作原理是这样的:当单片机上电后,它会按照程序中的指令开始执行,将P2口的输出值设置为0x00,即所有LED都熄灭。然后延时600ms,再将P2口的输出值设置为0xff,即所有LED都点亮。再次延时600ms后,程序会跳转到while(1)的循环中,再次执行前面的两个操作,这样就实现了流水灯的效果。通过Proteus软件进行仿真,可以验证程序的正确性和系统的稳定性。
需要注意的是,在电路中还添加了一个BUTTON按键,通过一个上拉电阻和一个1N4148二极管来实现按键的检测功能。当按键按下时,会将单片机的P3.2口的输入值置为低电平,从而触发一个中断,可以在程序中添加相应的中断处理函数来实现按键的功能扩展。同时,在电路中还添加了GENELECT33U16V、POLYPRO22P、RESPACK—8等元器件,用来保护电路和提高系统的稳定性。
总之,这个项目通过AT89C51单片机和Proteus软件的结合,实现了一个简单的流水灯系统,具有一定的实用价值和教学价值。
#include <reg52.h> unsigned char Table[] = {0x3F,0x06,0x5B,0x4F,0x66,0x6D,0x7D,0x07,0x7F,0x6F,0x77,0x7C,0x39,0x5E,0x79,0x71}; unsigned char Table_F[] = {0x8e}; sbit SEG1 = P3^7; sbit SEG2 = P3^6; sbit SEG3 = P3^5; sbit SEG4 = P3^4; sbit Irin = P3^2; sbit Irout = P3^3; sbit Key = P2^0; sbit SPK = P1^0; sbit LED = P2^7; unsigned char People = 0; unsigned char ALL = 0; #define uchar unsigned char #define uint unsigned int uint Num = 0; void Timer0Init(void); //50??@11.0592MHz void delay(unsigned int i) { char j; for(i; i > 0; i--) //??6000*200? for(j = 200; j > 0; j--); } void Delay_ms_89xx(unsigned int n_ms) //STC89Cxx ?? @11.0592MHz { unsigned char i, j; for(;n_ms>0;n_ms--) { i = 2; j = 176; do { while (--j); } while (--i); } } void main() { unsigned char count_sta = 0; unsigned char delay_time = 0; // IT0 = 1; //set INT0 int type (1:Falling 0:Low level) // EX0 = 1; //enable INT0 interrupt // EA = 1; //open global interrupt switch LED = 0; while(1) { //???? if(Key == 0) { People = 0; ALL = 0; } //???? if(Irin == 0) { Delay_ms_89xx(50); if(Irin == 0) { People++; ALL++; LED = 1; SPK = 0; while(Irin == 0); Delay_ms_89xx(500);Delay_ms_89xx(500); SPK = 1; LED = 0; } } if(Irout == 0) { Delay_ms_89xx(50); if(Irout == 0) { if(People > 0) { People --; } while(Irout == 0); } } //?? P0 = 0xff;//?? SEG1 = 1; SEG2 = 1; SEG3 = 1; SEG4 = 1; delay(2); SEG1 = 0; P0 = ~Table[ALL/10]; delay(2); P0 = 0xff;//?? SEG1 = 1; SEG2 = 1; SEG3 = 1; SEG4 = 1; delay(2); SEG2 = 0; P0 = ~Table[ALL%10]; delay(2); P0 = 0xff;//?? SEG1 = 1; SEG2 = 1; SEG3 = 1; SEG4 = 1; delay(2); SEG3 = 0; P0 = ~Table[People/10]; delay(2); P0 = 0xff;//?? SEG1 = 1; SEG2 = 1; SEG3 = 1; SEG4 = 1; delay(2); SEG4 = 0; P0 = ~Table[People%10]; delay(2); } } //External interrupt0 service routine void exint0() interrupt 0 //(location at 0003H) { Delay_ms_89xx(50); Num++; }程序逐步分析
这是一个基于STC89C52单片机的人数计数器代码。主要使用了按键、红外传感器、数码管、蜂鸣器、LED灯等元件。通过红外传感器检测人的进出,然后通过数码管显示总人数和进入人数,同时蜂鸣器发出短促的声音,LED灯闪烁表示有人进入。
具体实现:
1. 定义了数码管显示的编码表,分别对应0~9、A~F等字符;
2. 定义了按键、红外传感器、蜂鸣器、LED灯等元件的引脚,以及总人数和进入人数的变量;
3. 实现了延时函数,用于延时等待信号的稳定;
4. 在主函数中,通过检测按键和红外传感器的状态,对总人数和进入人数进行更新;
5. 在主函数中,通过数码管显示函数和延时函数,将总人数和进入人数显示在数码管上;
6. 实现了外部中断服务函数,用于对计数器进行计数。
值得注意的是,这段代码并不完整,其中缺少了一些函数的实现,如Timer0Init()函数,需要自行补充。同时,由于该代码是基于STC89C52单片机的,如果要在其他平台上使用,需要进行相应的修改。
阅读全文