fast rcnn代码
时间: 2023-09-22 14:11:51 浏览: 76
以下是 Fast R-CNN 的 PyTorch 代码示例:
```
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision.models as models
class FastRCNN(nn.Module):
def __init__(self, num_classes):
super(FastRCNN, self).__init__()
self.features = models.vgg16(pretrained=True).features
self.roi_pool = nn.AdaptiveMaxPool2d((7, 7))
self.fc1 = nn.Linear(512 * 7 * 7, 4096)
self.fc2 = nn.Linear(4096, 4096)
self.cls_score = nn.Linear(4096, num_classes)
self.bbox_pred = nn.Linear(4096, num_classes * 4)
def forward(self, x, rois):
x = self.features(x)
rois = torch.cat([rois[:, :1] * x.size(3), rois[:, 1:2] * x.size(2), rois[:, 2:3] * x.size(3), rois[:, 3:] * x.size(2)], 1)
crops = torch.zeros(rois.size(0), x.size(1), 7, 7).to(x.device)
for i in range(rois.size(0)):
crops[i] = self.roi_pool(x[:, :, int(rois[i, 1]):int(rois[i, 3]) + 1, int(rois[i, 0]):int(rois[i, 2]) + 1])
x = crops.view(crops.size(0), -1)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
cls_score = self.cls_score(x)
bbox_pred = self.bbox_pred(x)
return cls_score, bbox_pred
```
这个代码实现了一个 Fast R-CNN 模型,并使用 VGG16 作为特征提取器。在前向传播过程中,给定输入图像和 RoI,模型首先通过特征提取器提取特征图,然后通过 RoI 池化层从特征图中提取每个 RoI 的特征,将其展平并通过全连接层进行分类和边界框回归。
阅读全文