int alpha_beta(int depth, int alpha, int beta, int color) ;vector<pair<int, int> > generate_next_moves() ;int evaluate(int currBotColor);有这些函数,主函数如下:int main() { int x0, y0, x1, y1; // 分析自己收到的输入和自己过往的输出,并恢复棋盘状态 int turnID; cin >> turnID; currBotColor = grid_white; // 先假设自己是白方 for (int i = 0; i < turnID; i++) { // 根据这些输入输出逐渐恢复状态到当前回合 cin >> x0 >> y0 >> x1 >> y1; if (x0 == -1) currBotColor = grid_black; // 第一回合收到坐标是-1, -1,说明我是黑方 if (x0 >= 0) ProcStep(x0, y0, x1, y1, -currBotColor, false); // 模拟对方落子 if (i < turnID - 1) { cin >> x0 >> y0 >> x1 >> y1; if (x0 >= 0) ProcStep(x0, y0, x1, y1, currBotColor, false); // 模拟己方落子 } } int startX, startY, resultX, resultY; bool selfFirstBlack = (turnID == 1 && currBotColor == grid_black);//本方是黑方先手 if (selfFirstBlack) { startX = 8; startY = 8; resultX = -1; resultY = -1; } /****在上方填充你的代码,决策结果(本方将落子的位置)存入startX、startY、resultX、resultY中****/ // 决策结束,向平台输出决策结果 cout << startX << ' ' << startY << ' ' << resultX<< ' '<< resultY<< endl; return 0; }补充主函数实现六子棋一局下两步棋

时间: 2024-03-04 17:48:19 浏览: 18
在主函数中,如果需要实现一局下两步棋的功能,可以在决策前调用 `generate_next_moves()` 函数获取当前可行的落子位置,然后选择其中的两个位置进行落子。在落子过程中,需要模拟对方的落子和自己的落子。下面是一个简单的示例代码: ```c++ int main() { int x0, y0, x1, y1; int turnID; cin >> turnID; currBotColor = grid_white; for (int i = 0; i < turnID; i++) { cin >> x0 >> y0 >> x1 >> y1; if (x0 == -1) currBotColor = grid_black; if (x0 >= 0) ProcStep(x0, y0, x1, y1, -currBotColor, false); if (i < turnID - 1) { cin >> x0 >> y0 >> x1 >> y1; if (x0 >= 0) ProcStep(x0, y0, x1, y1, currBotColor, false); } } int startX1, startY1, resultX1, resultY1; int startX2, startY2, resultX2, resultY2; bool selfFirstBlack = (turnID == 1 && currBotColor == grid_black); if (selfFirstBlack) { startX1 = 8; startY1 = 8; resultX1 = -1; resultY1 = -1; startX2 = 8; startY2 = 7; resultX2 = -1; resultY2 = -1; } else { vector<pair<int, int>> nextMoves = generate_next_moves(); startX1 = nextMoves[0].first; startY1 = nextMoves[0].second; resultX1 = nextMoves[1].first; resultY1 = nextMoves[1].second; startX2 = nextMoves[2].first; startY2 = nextMoves[2].second; resultX2 = nextMoves[3].first; resultY2 = nextMoves[3].second; } board.place(startX1, startY1, currBotColor); board.place(resultX1, resultY1, currBotColor); cout << startX1 << ' ' << startY1 << ' ' << resultX1 << ' ' << resultY1 << endl; board.place(startX2, startY2, currBotColor); board.place(resultX2, resultY2, currBotColor); cout << startX2 << ' ' << startY2 << ' ' << resultX2 << ' ' << resultY2 << endl; return 0; } ``` 在这个示例代码中,我们首先根据输入输出逐渐恢复状态到当前回合。然后,如果是第一回合且自己是黑方,就选择固定的两个位置 `(8, 8)` 和 `(8, 7)` 进行落子。否则,就调用 `generate_next_moves()` 函数获取当前可行的落子位置,并选择其中的两个位置进行落子。最后,输出两个落子位置的坐标。在落子的过程中,需要分别调用 `board.place()` 函数模拟对方的落子和自己的落子。

相关推荐

int main() { int x0, y0, x1, y1; // 分析自己收到的输入和自己过往的输出,并恢复棋盘状态 int turnID; cin >> turnID; currBotColor = grid_white; // 先假设自己是白方 for (int i = 0; i < turnID; i++) { // 根据这些输入输出逐渐恢复状态到当前回合 cin >> x0 >> y0 >> x1 >> y1; if (x0 == -1) currBotColor = grid_black; // 第一回合收到坐标是-1, -1,说明我是黑方 if (x0 >= 0) ProcStep(x0, y0, x1, y1, -currBotColor, false); // 模拟对方落子 if (i < turnID - 1) { cin >> x0 >> y0 >> x1 >> y1; if (x0 >= 0) ProcStep(x0, y0, x1, y1, currBotColor, false); // 模拟己方落子 } } /************************************************************************************/ /***在下面填充你的代码,决策结果(本方将落子的位置)存入startX、startY、resultX、resultY中*****/ //下面仅为随机策略的示例代码,且效率低,可删除 int startX1, startY1, resultX1, resultY1; int startX2, startY2, resultX2, resultY2; int startX, startY, resultX, resultY; bool selfFirstBlack = (turnID == 1 && currBotColor == grid_black);//本方是黑方先手 if(selfFirstBlack){ startX=8; startY=8; resultX=-1; resultY=-1; } else{int depth = 4; // 设置搜索深度 int color = currBotColor; int alpha = INT_MIN; int beta = INT_MAX; int best_score = INT_MIN; vector > next_moves1 = generate_next_moves(); for (auto& next_move : next_moves1) { int x = next_move.first; int y = next_move.second; gridInfo[x][y] = color; // 模拟落子 int score = -alpha_beta(depth - 1, -beta, -alpha, -color); // 递归搜索 gridInfo[x][y] = 0; // 撤销落子 if (score > best_score) { best_score = score; startX1 = x; startY1 = y; } if (best_score > alpha) { alpha = best_score; } } resultX1 = startX1 + rand() % 3 - 1; // 在最优解附近随机生成落子位置 resultY1 = startY1 + rand() % 3 - 1;逐行解释

最新推荐

recommend-type

【车牌识别】 GUI BP神经网络车牌识别(带语音播报)【含Matlab源码 668期】.zip

Matlab领域上传的视频均有对应的完整代码,皆可运行,亲测可用,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描视频QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
recommend-type

【作业视频】六年级第1讲--计算专项训练(2022-10-28 22-51-53).mp4

【作业视频】六年级第1讲--计算专项训练(2022-10-28 22-51-53).mp4
recommend-type

3文件需求申请单.xls

3文件需求申请单.xls
recommend-type

【脑肿瘤检测】 GUI SOM脑肿瘤检测【含Matlab源码 2322期】.zip

【脑肿瘤检测】 GUI SOM脑肿瘤检测【含Matlab源码 2322期】
recommend-type

GOGO语言基础教程、实战案例和实战项目讲解

GO语言基础教程、实战案例和实战项目讲解GO语言基础教程、实战案例和实战项目讲解GO语言基础教程、实战案例和实战项目讲解GO语言基础教程、实战案例和实战项目讲解GO语言基础教程、实战案例和实战项目讲解GO语言基础教程、实战案例和实战项目讲解GO语言基础教程、实战案例和实战项目讲解GO语言基础教程、实战案例和实战项目讲解GO语言基础教程、实战案例和实战项目讲解GO语言基础教程、实战案例和实战项目讲解GO语言基础教程、实战案例和实战项目讲解GO语言基础教程、实战案例和实战项目讲解GO语言基础教程、实战案例和实战项目讲解GO语言基础教程、实战案例和实战项目讲解GO语言基础教程、实战案例和实战项目讲解GO语言基础教程、实战案例和实战项目讲解GO语言基础教程、实战案例和实战项目讲解GO语言基础教程、实战案例和实战项目讲解GO语言基础教程、实战案例和实战项目讲解GO语言基础教程、实战案例和实战项目讲解GO语言基础教程、实战案例和实战项目讲解GO语言基础教程、实战案例和实战项目讲解GO语言基础教程、实战案例和实战项目讲解GO语言基础教程、实战案例和实战项目讲解GO语言基础教程、实战案例和实战项目讲解
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

云原生架构与soa架构区别?

云原生架构和SOA架构是两种不同的架构模式,主要有以下区别: 1. 设计理念不同: 云原生架构的设计理念是“设计为云”,注重应用程序的可移植性、可伸缩性、弹性和高可用性等特点。而SOA架构的设计理念是“面向服务”,注重实现业务逻辑的解耦和复用,提高系统的灵活性和可维护性。 2. 技术实现不同: 云原生架构的实现技术包括Docker、Kubernetes、Service Mesh等,注重容器化、自动化、微服务等技术。而SOA架构的实现技术包括Web Services、消息队列等,注重服务化、异步通信等技术。 3. 应用场景不同: 云原生架构适用于云计算环境下的应用场景,如容器化部署、微服务
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。