vector<pair<int, int> > next_moves = generate_next_moves(); for (auto& next_move : next_moves) { int x = next_move.first; int y = next_move.second; gridInfo[x][y] = color; // 模拟落子 int score = -alpha_beta(depth - 1, -beta, -alpha, -color); // 递归搜索 gridInfo[x][y] = 0; // 撤销落子 if (score > best_score) { best_score = score; if (best_score > alpha) { alpha = best_score; } if (best_score >= beta) { break; // β剪枝 } } }你能和我解释一下next_move和bext_moves的区别吗

时间: 2024-02-14 08:08:22 浏览: 32
当代码中出现 `next_moves` 时,它是一个存储下一步可行落子位置的向量容器,每个元素是一个 `pair<int, int>` 类型的坐标,表示下一步可落子的位置。而 `next_move` 则是 `next_moves` 容器中的一个元素,也就是一个落子位置的坐标。在循环中,程序会遍历 `next_moves` 容器中的所有元素,对每个落子位置进行模拟落子、递归搜索、撤销落子等操作,以获取最优解。
相关问题

int alpha_beta_next(int depth, int alpha, int beta, int color) { if (depth == 0) { return evaluate(currBotColor); } vector<pair<int, int>> next_moves = generate_next_moves(); for (auto& next_move : next_moves) { int x = next_move.first; int y = next_move.second; gridInfo[x][y] = color; int score = -alpha_beta_next(depth - 1, -beta, -alpha, -color); gridInfo[x][y] = 0; if (score >= beta) { return score; } if (score > alpha) { alpha = score; } } return alpha; } int alpha_beta_two_steps(int depth, int alpha, int beta, int color) { if (depth == 0) { return evaluate(currBotColor); } vector<pair<int, int>> next_moves = generate_next_moves(); for (auto& next_move : next_moves) { int x1 = next_move.first; int y1 = next_move.second; gridInfo[x1][y1] = color; vector<pair<int, int>> next_moves2 = generate_next_moves(); for (auto& next_move2 : next_moves2) { int x2 = next_move2.first; int y2 = next_move2.second; gridInfo[x2][y2] = color; int score = -alpha_beta_two_steps(depth - 2, -beta, -alpha, -color); gridInfo[x2][y2] = 0; if (score >= beta) { gridInfo[x1][y1] = 0; return score; } if (score > alpha) { alpha = score; } } gridInfo[x1][y1] = 0; } return alpha; }在主函数中怎么调用

在主函数中,你可以先调用 generate_next_moves() 函数生成下一步可行的落子位置,然后根据你的需求选择使用 alpha_beta_next() 函数还是 alpha_beta_two_steps() 函数。调用时需要传入相应的参数,如下: // 调用 alpha_beta_next() int score = alpha_beta_next(depth, alpha, beta, currBotColor); // 调用 alpha_beta_two_steps() int score = alpha_beta_two_steps(depth, alpha, beta, currBotColor); 其中,depth 为搜索深度,alpha 和 beta 为剪枝过程中的参数,currBotColor 为当前自己的颜色。调用结束后,score 为搜索得到的最优分数。

vector<pair<int, int>> next_moves1 = generate_next_moves(); int best_score = INT_MIN; for (auto& next_move1 : next_moves1) { int x1 = next_move1.first; int y1 = next_move1.second; gridInfo[x1][y1] = currBotColor; // 针对当前的第一步落子位置进行 alpha-beta 剪枝搜索 int score1 = -alpha_beta(SEARCH_DEPTH - 1, INT_MIN, INT_MAX, -currBotColor); if (score1 > best_score) { // 如果当前位置是历史最优,则在可行的第二步落子位置中搜索 best_score = score1; vector<pair<int, int>> next_moves2= generate_next_moves(); for (auto& next_move2 : next_moves2) { int x2 = next_move2.first; int y2 = next_move2.second; gridInfo[x2][y2] = currBotColor; // 针对当前的第二步落子位置进行 alpha-beta 剪枝搜索 int score2 = -alpha_beta(SEARCH_DEPTH - 2, best_score, INT_MAX, -currBotColor); if (score2 > best_score) { // 如果当前位置是历史最优,则更新历史最优位置为当前位置 best_score = score2; X1 = x1; Y1 = y1; X2 = x2; Y2 = y2; } gridInfo[x2][y2] = 0; } } gridInfo[x1][y1] = 0; } } cout << X1 << ' ' << Y1 << ' ' << X2 << ' ' << Y2 << endl;完善代码,加上考虑对手的

以下是加上考虑对手的代码: ``` vector<pair<int, int>> next_moves1 = generate_next_moves(); int best_score = INT_MIN; for (auto& next_move1 : next_moves1) { int x1 = next_move1.first; int y1 = next_move1.second; gridInfo[x1][y1] = currBotColor; int score1 = -alpha_beta(SEARCH_DEPTH - 1, INT_MIN, INT_MAX, -currBotColor); if (score1 > best_score) { // 如果当前位置是历史最优,则在可行的第二步落子位置中搜索 best_score = score1; vector<pair<int, int>> next_moves2 = generate_next_moves(); for (auto& next_move2 : next_moves2) { int x2 = next_move2.first; int y2 = next_move2.second; gridInfo[x2][y2] = -currBotColor; // 对手的行动 int score2 = -alpha_beta(SEARCH_DEPTH - 2, -best_score, -score1, currBotColor); // 注意alpha和beta的符号要反转 if (score2 > best_score) { // 如果当前位置是历史最优,则更新历史最优位置为当前位置 best_score = score2; X1 = x1; Y1 = y1; X2 = x2; Y2 = y2; } gridInfo[x2][y2] = 0; } } gridInfo[x1][y1] = 0; } cout << X1 << ' ' << Y1 << ' ' << X2 << ' ' << Y2 << endl; ``` 在第二步搜索中,我们将对手的行动标记为相反的颜色,即 `-currBotColor`,并且在调用 `alpha_beta` 函数时,将传入的 `alpha` 和 `beta` 参数的符号取反,以反转搜索结果的最大值和最小值。具体来说,我们将 `alpha_beta(SEARCH_DEPTH - 2, best_score, INT_MAX, -currBotColor)` 改为 `-alpha_beta(SEARCH_DEPTH - 2, -best_score, -score1, currBotColor)`。这样,我们就能够在搜索过程中考虑对手的行动了。

相关推荐

int main() { int x0, y0, x1, y1; // 分析自己收到的输入和自己过往的输出,并恢复棋盘状态 int turnID; cin >> turnID; currBotColor = grid_white; // 先假设自己是白方 for (int i = 0; i < turnID; i++) { // 根据这些输入输出逐渐恢复状态到当前回合 cin >> x0 >> y0 >> x1 >> y1; if (x0 == -1) currBotColor = grid_black; // 第一回合收到坐标是-1, -1,说明我是黑方 if (x0 >= 0) ProcStep(x0, y0, x1, y1, -currBotColor, false); // 模拟对方落子 if (i < turnID - 1) { cin >> x0 >> y0 >> x1 >> y1; if (x0 >= 0) ProcStep(x0, y0, x1, y1, currBotColor, false); // 模拟己方落子 } } /************************************************************************************/ /***在下面填充你的代码,决策结果(本方将落子的位置)存入startX、startY、resultX、resultY中*****/ //下面仅为随机策略的示例代码,且效率低,可删除 int startX1, startY1, resultX1, resultY1; int startX2, startY2, resultX2, resultY2; int startX, startY, resultX, resultY; bool selfFirstBlack = (turnID == 1 && currBotColor == grid_black);//本方是黑方先手 if(selfFirstBlack){ startX=8; startY=8; resultX=-1; resultY=-1; } else{int depth = 4; // 设置搜索深度 int color = currBotColor; int alpha = INT_MIN; int beta = INT_MAX; int best_score = INT_MIN; vector > next_moves1 = generate_next_moves(); for (auto& next_move : next_moves1) { int x = next_move.first; int y = next_move.second; gridInfo[x][y] = color; // 模拟落子 int score = -alpha_beta(depth - 1, -beta, -alpha, -color); // 递归搜索 gridInfo[x][y] = 0; // 撤销落子 if (score > best_score) { best_score = score; startX1 = x; startY1 = y; } if (best_score > alpha) { alpha = best_score; } } resultX1 = startX1 + rand() % 3 - 1; // 在最优解附近随机生成落子位置 resultY1 = startY1 + rand() % 3 - 1;逐行解释

最新推荐

recommend-type

Python学习笔记16 - 猜数字小游戏

猜数字小游戏的相关函数,与主程序搭配使用
recommend-type

机器人比赛内容的讲解,帮助简单了解一下机器人比赛的注意事项

适用于未参加过机器人比赛的小伙伴,简单了解一下注意事项。
recommend-type

shumaguan.rar

shumaguan.rar
recommend-type

信捷MP3系列步进电机CAD图纸.zip

信捷MP3系列步进电机CAD图纸
recommend-type

基于Springboot的足球青训俱乐部管理系统(免费提供全套java开源毕业设计源码+数据库+开题报告+论文+ppt+使用说明

随着社会经济的快速发展,人们对足球俱乐部的需求日益增加,加快了足球健身俱乐部的发展,足球俱乐部管理工作日益繁忙,传统的管理方式已经无法满足足球俱乐部管理需求,因此,为了提高足球俱乐部管理效率,足球俱乐部管理后台系统应运而生。 本文重点阐述了足球青训俱乐部管理后台系统的开发过程,以实际运用为开发背景,基于Spring Boot框架,运用了Java技术和MYSQL数据库进行开发设计,充分保证系统的安全性和稳定性。本系统界面良好,操作简单方便,通过系统概述、系统分析、系统设计、数据库设计、系统测试这几个部分,详细的说明了系统的开发过程,最后并对整个开发过程进行了总结,实现了俱乐部相关信息管理的重要功能。 本系统经过测试,运行效果稳定,操作方便、快捷,是一个功能全面、实用性好、安全性高,并具有良好的可扩展性、可维护性的足球青训俱乐部管理后台系统。 关键字:俱乐部管理;Spring Boot框架;Java技术;MYSQL数据库
recommend-type

BSC绩效考核指标汇总 (2).docx

BSC(Balanced Scorecard,平衡计分卡)是一种战略绩效管理系统,它将企业的绩效评估从传统的财务维度扩展到非财务领域,以提供更全面、深入的业绩衡量。在提供的文档中,BSC绩效考核指标主要分为两大类:财务类和客户类。 1. 财务类指标: - 部门费用的实际与预算比较:如项目研究开发费用、课题费用、招聘费用、培训费用和新产品研发费用,均通过实际支出与计划预算的百分比来衡量,这反映了部门在成本控制上的效率。 - 经营利润指标:如承保利润、赔付率和理赔统计,这些涉及保险公司的核心盈利能力和风险管理水平。 - 人力成本和保费收益:如人力成本与计划的比例,以及标准保费、附加佣金、续期推动费用等与预算的对比,评估业务运营和盈利能力。 - 财务效率:包括管理费用、销售费用和投资回报率,如净投资收益率、销售目标达成率等,反映公司的财务健康状况和经营效率。 2. 客户类指标: - 客户满意度:通过包装水平客户满意度调研,了解产品和服务的质量和客户体验。 - 市场表现:通过市场销售月报和市场份额,衡量公司在市场中的竞争地位和销售业绩。 - 服务指标:如新契约标保完成度、续保率和出租率,体现客户服务质量和客户忠诚度。 - 品牌和市场知名度:通过问卷调查、公众媒体反馈和总公司级评价来评估品牌影响力和市场认知度。 BSC绩效考核指标旨在确保企业的战略目标与财务和非财务目标的平衡,通过量化这些关键指标,帮助管理层做出决策,优化资源配置,并驱动组织的整体业绩提升。同时,这份指标汇总文档强调了财务稳健性和客户满意度的重要性,体现了现代企业对多维度绩效管理的重视。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【进阶】Flask中的会话与用户管理

![python网络编程合集](https://media.geeksforgeeks.org/wp-content/uploads/20201021201514/pythonrequests.PNG) # 2.1 用户注册和登录 ### 2.1.1 用户注册表单的设计和验证 用户注册表单是用户创建帐户的第一步,因此至关重要。它应该简单易用,同时收集必要的用户信息。 * **字段设计:**表单应包含必要的字段,如用户名、电子邮件和密码。 * **验证:**表单应验证字段的格式和有效性,例如电子邮件地址的格式和密码的强度。 * **错误处理:**表单应优雅地处理验证错误,并提供清晰的错误消
recommend-type

卷积神经网络实现手势识别程序

卷积神经网络(Convolutional Neural Network, CNN)在手势识别中是一种非常有效的机器学习模型。CNN特别适用于处理图像数据,因为它能够自动提取和学习局部特征,这对于像手势这样的空间模式识别非常重要。以下是使用CNN实现手势识别的基本步骤: 1. **输入数据准备**:首先,你需要收集或获取一组带有标签的手势图像,作为训练和测试数据集。 2. **数据预处理**:对图像进行标准化、裁剪、大小调整等操作,以便于网络输入。 3. **卷积层(Convolutional Layer)**:这是CNN的核心部分,通过一系列可学习的滤波器(卷积核)对输入图像进行卷积,以
recommend-type

BSC资料.pdf

"BSC资料.pdf" 战略地图是一种战略管理工具,它帮助企业将战略目标可视化,确保所有部门和员工的工作都与公司的整体战略方向保持一致。战略地图的核心内容包括四个相互关联的视角:财务、客户、内部流程和学习与成长。 1. **财务视角**:这是战略地图的最终目标,通常表现为股东价值的提升。例如,股东期望五年后的销售收入达到五亿元,而目前只有一亿元,那么四亿元的差距就是企业的总体目标。 2. **客户视角**:为了实现财务目标,需要明确客户价值主张。企业可以通过提供最低总成本、产品创新、全面解决方案或系统锁定等方式吸引和保留客户,以实现销售额的增长。 3. **内部流程视角**:确定关键流程以支持客户价值主张和财务目标的实现。主要流程可能包括运营管理、客户管理、创新和社会责任等,每个流程都需要有明确的短期、中期和长期目标。 4. **学习与成长视角**:评估和提升企业的人力资本、信息资本和组织资本,确保这些无形资产能够支持内部流程的优化和战略目标的达成。 绘制战略地图的六个步骤: 1. **确定股东价值差距**:识别与股东期望之间的差距。 2. **调整客户价值主张**:分析客户并调整策略以满足他们的需求。 3. **设定价值提升时间表**:规划各阶段的目标以逐步缩小差距。 4. **确定战略主题**:识别关键内部流程并设定目标。 5. **提升战略准备度**:评估并提升无形资产的战略准备度。 6. **制定行动方案**:根据战略地图制定具体行动计划,分配资源和预算。 战略地图的有效性主要取决于两个要素: 1. **KPI的数量及分布比例**:一个有效的战略地图通常包含20个左右的指标,且在四个视角之间有均衡的分布,如财务20%,客户20%,内部流程40%。 2. **KPI的性质比例**:指标应涵盖财务、客户、内部流程和学习与成长等各个方面,以全面反映组织的绩效。 战略地图不仅帮助管理层清晰传达战略意图,也使员工能更好地理解自己的工作如何对公司整体目标产生贡献,从而提高执行力和组织协同性。