pytoch读取pkl格式文件数据并分为训练测试集

时间: 2023-06-03 10:02:29 浏览: 550
可以使用pickle库加载pkl格式的文件,然后使用sklearn库中的train_test_split函数划分训练集和测试集。下面是一个示例代码: ```python import pickle from sklearn.model_selection import train_test_split # 读取pkl格式的文件 with open("data.pkl", "rb") as f: data = pickle.load(f) # 分离特征和标签 X = data["features"] y = data["labels"] # 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) ``` 其中,data.pkl是一个包含特征和标签的数据文件,X表示特征向量,y表示对应的标签。train_test_split函数可以将数据集按照给定比例划分为训练集和测试集,test_size参数表示测试集的比例,random_state参数用于控制划分结果的随机性。
相关问题

可能没有说清楚,我用networkx构蛋白质图,每个残基作为一个节点,并给每个节点添加了一个19维的特征,将图保存为了pkl文件,每个蛋白质为一张图,现在我想用pyg将图导入,用于下一步图神经网络的训练,请给出导入数据的代码以及模型搭建、训练的示例代码

在PyTorch Geometric (PyG)中处理这种类型的蛋白质图数据通常需要先加载pkl文件,然后创建`DataList`或`Data`对象。这里是一个基本的步骤: ```python import torch from torch_geometric.data import Data, DataLoader from torch.nn import Linear from torch_geometric.nn import GCNConv from networkx.readwrite import pickle # 加载pkl文件 def load_protein_graphs(pkl_file_path): graphs = [] with open(pkl_file_path, 'rb') as f: for protein_data in pickle.load(f): nodes = protein_data['nodes'] # 节点列表 edges = protein_data['edges'] # 边列表 features = torch.tensor(protein_data['features'], dtype=torch.float) # 19维特征 graph = Data(x=features, edge_index=edges) # 创建Data对象 graphs.append(graph) return graphs # 读取并加载数据 protein_graphs = load_protein_graphs('protein_graphs.pkl') train_data, val_data, test_data = train_val_test_split(protein_graphs, split_ratio=[0.8, 0.1, 0.1]) # 分割数据集 # 数据加载器 train_loader = DataLoader(train_data, batch_size=32, shuffle=True) val_loader = DataLoader(val_data, batch_size=32, shuffle=False) test_loader = DataLoader(test_data, batch_size=32, shuffle=False) # 模型搭建 class ProteinGraphModel(torch.nn.Module): def __init__(self): super(ProteinGraphModel, self).__init__() self.conv1 = GCNConv(protein_features_dim, 64) # 假设蛋白特征维度为protein_features_dim self.conv2 = GCNConv(64, num_classes) # num_classes为目标类别数 def forward(self, data): x, edge_index = data.x, data.edge_index x = F.relu(self.conv1(x, edge_index)) x = F.dropout(x, training=self.training) x = self.conv2(x, edge_index) return F.log_softmax(x, dim=1) model = ProteinGraphModel() # 训练示例 optimizer = torch.optim.Adam(model.parameters(), lr=0.01) criterion = torch.nn.NLLLoss() for epoch in range(num_epochs): # 设定总迭代次数num_epochs for data in train_loader: optimizer.zero_grad() out = model(data) loss = criterion(out[data.train_mask], data.y[data.train_mask]) loss.backward() optimizer.step() # 记录学习过程 print(f"Epoch {epoch+1}/{num_epochs}, Loss: {loss.item()}") # 验证和测试阶段 with torch.no_grad(): model.eval() train_acc = accuracy(model, train_loader) val_acc = accuracy(model, val_loader) test_acc = accuracy(model, test_loader) print(f"Train Acc: {train_acc}, Val Acc: {val_acc}, Test Acc: {test_acc}") ``` 在这个例子中,你需要替换`protein_features_dim`为实际的19维特征维度。此外,记得根据你的需求调整模型结构、损失函数和优化器参数。别忘了运行完训练后评估模型性能。

pointnet2复现pytorch

对于PointNet++(PointNet2)的复现,可以参考以下步骤: 1. 首先,需要安装PyTorch,以及相关的依赖库,如numpy、scipy、scikit-learn等。 2. 下载PointNet++的代码,可以从Github上获取。 3. 对于数据集的处理,可以根据自己的需求进行修改。PointNet++的输入是一个点云,可以使用Plyfile库读取ply格式的点云文件,并将其转换为numpy数组。需要注意的是,点云需要进行归一化处理,以便于网络的训练。 4. 网络的实现可以参考PointNet++的论文,其中包括两个核心模块:PointNet++基础模块和点集聚合模块。在PyTorch中,可以通过搭建nn.Module来实现网络。 5. 在网络训练之前,需要定义损失函数和优化器。对于分类任务,可以使用交叉熵损失函数;对于分割任务,可以使用交叉熵损失函数或者Dice Loss。 6. 网络的训练可以通过PyTorch提供的API进行,如torch.optim.Adam和torch.utils.data.DataLoader等。 7. 训练完成后,可以保存模型,以便于后续的测试或者使用。可以使用torch.save将模型保存为.pth或者.pkl格式的文件。 8. 在测试时,需要加载训练好的模型,并将测试数据输入网络中进行预测。可以使用torch.load加载训练好的模型。 以上就是PointNet++(PointNet2)的复现步骤,需要根据具体任务进行相应的修改和调整。
阅读全文

相关推荐

最新推荐

recommend-type

PyTorch版YOLOv4训练自己的数据集—基于Google Colab

你需要将数据集分为训练集和验证集,并按照YOLOv4的要求格式化,通常包括类别标签、边界框坐标以及图像文件。 4. **配置训练参数**:在训练脚本中,你需要设置超参数,如学习率、批大小、训练轮数等。同时,要指定...
recommend-type

pytorch学习教程之自定义数据集

在这个例子中,我们创建了训练集和验证集的`DataLoader`,每个批次包含32个样本,并且在训练时进行随机打乱。`num_workers`参数指定用于加载数据的子进程数量,可以提高数据加载速度。 现在,我们已经成功地定义并...
recommend-type

pytorch实现对输入超过三通道的数据进行训练

在PyTorch中训练输入超过三通道的数据,主要涉及到数据处理和模型构建两个核心环节。在本案例中,我们以视频识别为例,其中输入数据是8秒、25fps的灰度视频,每帧为单通道灰度图像。为了适应模型训练,我们需要将...
recommend-type

基于pytorch的UNet_demo实现及训练自己的数据集.docx

本文将介绍如何在PyTorch环境中实现UNet网络,并训练自定义的数据集。 1. **UNet-PyTorch Demo** - **源码仓库**: 可以从[官方GitHub仓库](https://github.com/leijue222/portrait-matting-unet-flask)克隆一个...
recommend-type

Pytorch使用MNIST数据集实现CGAN和生成指定的数字方式

在本教程中,我们将探讨如何使用PyTorch框架来实现条件生成对抗网络(CGAN)并利用MNIST数据集生成指定数字的图像。CGAN是一种扩展了基础生成对抗网络(GAN)的概念,它允许在生成过程中加入额外的条件信息,如类...
recommend-type

C语言数组操作:高度检查器编程实践

资源摘要信息: "C语言编程题之数组操作高度检查器" C语言是一种广泛使用的编程语言,它以其强大的功能和对低级操作的控制而闻名。数组是C语言中一种基本的数据结构,用于存储相同类型数据的集合。数组操作包括创建、初始化、访问和修改元素以及数组的其他高级操作,如排序、搜索和删除。本资源名为“c语言编程题之数组操作高度检查器.zip”,它很可能是一个围绕数组操作的编程实践,具体而言是设计一个程序来检查数组中元素的高度。在这个上下文中,“高度”可能是对数组中元素值的一个比喻,或者特定于某个应用场景下的一个术语。 知识点1:C语言基础 C语言编程题之数组操作高度检查器涉及到了C语言的基础知识点。它要求学习者对C语言的数据类型、变量声明、表达式、控制结构(如if、else、switch、循环控制等)有清晰的理解。此外,还需要掌握C语言的标准库函数使用,这些函数是处理数组和其他数据结构不可或缺的部分。 知识点2:数组的基本概念 数组是C语言中用于存储多个相同类型数据的结构。它提供了通过索引来访问和修改各个元素的方式。数组的大小在声明时固定,之后不可更改。理解数组的这些基本特性对于编写有效的数组操作程序至关重要。 知识点3:数组的创建与初始化 在C语言中,创建数组时需要指定数组的类型和大小。例如,创建一个整型数组可以使用int arr[10];语句。数组初始化可以在声明时进行,也可以在之后使用循环或单独的赋值语句进行。初始化对于定义检查器程序的初始状态非常重要。 知识点4:数组元素的访问与修改 通过使用数组索引(下标),可以访问数组中特定位置的元素。在C语言中,数组索引从0开始。修改数组元素则涉及到了将新值赋给特定索引位置的操作。在编写数组操作程序时,需要频繁地使用这些操作来实现功能。 知识点5:数组高级操作 除了基本的访问和修改之外,数组的高级操作包括排序、搜索和删除。这些操作在很多实际应用中都有广泛用途。例如,检查器程序可能需要对数组中的元素进行排序,以便于进行高度检查。搜索功能用于查找特定值的元素,而删除操作则用于移除数组中的元素。 知识点6:编程实践与问题解决 标题中提到的“高度检查器”暗示了一个具体的应用场景,可能涉及到对数组中元素的某种度量或标准进行判断。编写这样的程序不仅需要对数组操作有深入的理解,还需要将这些操作应用于解决实际问题。这要求编程者具备良好的逻辑思维能力和问题分析能力。 总结:本资源"c语言编程题之数组操作高度检查器.zip"是一个关于C语言数组操作的实际应用示例,它结合了编程实践和问题解决的综合知识点。通过实现一个针对数组元素“高度”检查的程序,学习者可以加深对数组基础、数组操作以及C语言编程技巧的理解。这种类型的编程题目对于提高编程能力和逻辑思维能力都有显著的帮助。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【KUKA系统变量进阶】:揭秘从理论到实践的5大关键技巧

![【KUKA系统变量进阶】:揭秘从理论到实践的5大关键技巧](https://giecdn.blob.core.windows.net/fileuploads/image/2022/11/17/kuka-visual-robot-guide.jpg) 参考资源链接:[KUKA机器人系统变量手册(KSS 8.6 中文版):深入解析与应用](https://wenku.csdn.net/doc/p36po06uv7?spm=1055.2635.3001.10343) # 1. KUKA系统变量的理论基础 ## 理解系统变量的基本概念 KUKA系统变量是机器人控制系统中的一个核心概念,它允许
recommend-type

如何使用Python编程语言创建一个具有动态爱心图案作为背景并添加文字'天天开心(高级版)'的图形界面?

要在Python中创建一个带动态爱心图案和文字的图形界面,可以结合使用Tkinter库(用于窗口和基本GUI元素)以及PIL(Python Imaging Library)处理图像。这里是一个简化的例子,假设你已经安装了这两个库: 首先,安装必要的库: ```bash pip install tk pip install pillow ``` 然后,你可以尝试这个高级版的Python代码: ```python import tkinter as tk from PIL import Image, ImageTk def draw_heart(canvas): heart = I
recommend-type

基于Swift开发的嘉定单车LBS iOS应用项目解析

资源摘要信息:"嘉定单车汇(IOS app).zip" 从标题和描述中,我们可以得知这个压缩包文件包含的是一套基于iOS平台的移动应用程序的开发成果。这个应用是由一群来自同济大学软件工程专业的学生完成的,其核心功能是利用位置服务(LBS)技术,面向iOS用户开发的单车共享服务应用。接下来将详细介绍所涉及的关键知识点。 首先,提到的iOS平台意味着应用是为苹果公司的移动设备如iPhone、iPad等设计和开发的。iOS是苹果公司专有的操作系统,与之相对应的是Android系统,另一个主要的移动操作系统平台。iOS应用通常是用Swift语言或Objective-C(OC)编写的,这在标签中也得到了印证。 Swift是苹果公司在2014年推出的一种新的编程语言,用于开发iOS和macOS应用程序。Swift的设计目标是与Objective-C并存,并最终取代后者。Swift语言拥有现代编程语言的特性,包括类型安全、内存安全、简化的语法和强大的表达能力。因此,如果一个项目是使用Swift开发的,那么它应该会利用到这些特性。 Objective-C是苹果公司早前主要的编程语言,用于开发iOS和macOS应用程序。尽管Swift现在是主要的开发语言,但仍然有许多现存项目和开发者在使用Objective-C。Objective-C语言集成了C语言与Smalltalk风格的消息传递机制,因此它通常被认为是一种面向对象的编程语言。 LBS(Location-Based Services,位置服务)是基于位置信息的服务。LBS可以用来为用户提供地理定位相关的信息服务,例如导航、社交网络签到、交通信息、天气预报等。本项目中的LBS功能可能包括定位用户位置、查找附近的单车、计算骑行路线等功能。 从文件名称列表来看,包含的三个文件分别是: 1. ios期末项目文档.docx:这份文档可能是对整个iOS项目的设计思路、开发过程、实现的功能以及遇到的问题和解决方案等进行的详细描述。对于理解项目的背景、目标和实施细节至关重要。 2. 移动应用开发项目期末答辩.pptx:这份PPT文件应该是为项目答辩准备的演示文稿,里面可能包括项目的概览、核心功能演示、项目亮点以及团队成员介绍等。这可以作为了解项目的一个快速入门方式,尤其是对项目的核心价值和技术难点有直观的认识。 3. LBS-ofo期末项目源码.zip:这是项目的源代码压缩包,包含了完成单车汇项目所需的全部Swift或Objective-C代码。源码对于理解项目背后的逻辑和实现细节至关重要,同时也是评估项目质量、学习最佳实践、复用或扩展功能的基础。 综合上述信息,"嘉定单车汇(IOS app).zip"不仅仅是一个应用程序的压缩包,它还代表了一个团队在软件工程项目中的完整工作流程,包含了项目文档、演示材料和实际编码,为学习和评估提供了一个很好的案例。