马尔科夫决策过程代码
时间: 2024-05-06 07:13:57 浏览: 113
马尔科夫决策过程(Markov Decision Process,MDP)一种用于描述序贯决策问题的数学模型。在代码实现上,可以使用Python的相关库来构和求解MDP问题,例如使用numpy和gym库。
下面是一个简单的马尔科夫决策过程代码示例:
```python
import numpy as np
# 定义MDP的状态空间、动作空间、状态转移概率和奖励函数
states = ['S1', 'S2', 'S3'] # 状态空间
actions = ['A1', 'A2'] # 动作空间
transition_probs = {
'S1': {
'A1': {'S1': 0.2, 'S2': 0.8},
'A2': {'S2': 1.0}
},
'S2': {
'A1': {'S1': 0.6, 'S3': 0.4},
'A2': {'S3': 1.0}
},
'S3': {
'A1': {'S3': 1.0},
'A2': {'S1': 0.7, 'S3': 0.3}
}
}
rewards = {
'S1': {'A1': {'S1': -10, 'S3': 5}, 'A2': {'S3': 0}},
'S3': {'A1': {'S3': 0}, 'A2': {'S1': 20, 'S3': -5}}
}
# 定义MDP的价值函数和策略
values = {state: 0 for state in states} # 价值函数
policy = {state: np.random.choice(actions) for state in states} # 策略
# 迭代求解MDP的最优策略和最优价值函数
discount_factor = 0.9 # 折扣因子
num_iterations = 100 # 迭代次数
for _ in range(num_iterations):
new_values = {}
for state in states:
action = policy[state]
new_value = sum(transition_probs[state][action][next_state] * (rewards[state][action][next_state] + discount_factor * values[next_state]) for next_state in states)
new_values[state] = new_value
values = new_values
new_policy = {}
for state in states:
action_values = {action: sum(transition_probs[state][action][next_state] * (rewards[state][action][next_state] + discount_factor * values[next_state]) for next_state in states) for action in actions}
best_action = max(action_values, key=action_values.get)
new_policy[state] = best_action
policy = new_policy
# 输出最优策略和最优价值函数
print("Optimal Policy:")
for state, action in policy.items():
print(f"State: {state}, Action: {action}")
print("Optimal Values:")
for state, value in values.items():
print(f"State: {state}, Value: {value}")
```
这段代码实现了一个简单的马尔科夫决策过程,包括定义状态空间、动作空间、状态转移概率和奖励函数,以及迭代求解最优策略和最优价值函数。在代码中,使用了折扣因子来衡量未来奖励的重要性,并通过迭代更新价值函数和策略来逐步优化。
阅读全文