分支限界法求解货郎问题伪码
时间: 2023-08-11 15:07:05 浏览: 124
分支定界伪代码.txt
5星 · 资源好评率100%
下面是使用分支限界法求解货郎问题的伪码:
```
class City:
def __init__(self, name, distance):
self.name = name
self.distance = distance
def tsp(cities):
n = len(cities)
path = [0] * (n + 1)
visited = [False] * n
best_path = [0] * (n + 1)
best_distance = float('inf')
def calculate_distance(path):
total_distance = 0
for i in range(n):
total_distance += cities[path[i]].distance[path[i+1]]
return total_distance
def branch_and_bound(curr_city, curr_distance, depth):
nonlocal best_distance, best_path
if depth == n:
curr_distance += cities[curr_city].distance[0]
if curr_distance < best_distance:
best_distance = curr_distance
best_path = path.copy()
for i in range(1, n):
if not visited[i]:
path[depth] = i
visited[i] = True
new_distance = curr_distance + cities[curr_city].distance[i]
if new_distance < best_distance:
branch_and_bound(i, new_distance, depth + 1)
visited[i] = False
branch_and_bound(0, 0, 0)
return best_path, best_distance
```
这段伪码实现了一个`City`类来表示每个城市,其中包含了城市的名称和与其他城市的距离。`tsp`函数使用分支限界法来解决货郎问题。它通过递归地在每个节点处进行分支和限界来搜索最优路径。`path`列表用于保存当前的路径,`visited`列表用于标记已经访问过的城市。`best_path`和`best_distance`分别用于保存最优路径和最小距离。`calculate_distance`函数用于计算给定路径的总距离。`branch_and_bound`函数是核心的分支限界算法实现,它通过遍历每个未访问过的城市进行分支,并在每个节点处进行限界剪枝判断。最终,函数返回最优路径和最小距离。
请注意,这只是一个简化的伪码示例,实际的实现可能需要更多的优化和边界条件处理。
阅读全文