if not os.path.exists(model_dir): os.makedirs(model_dir)
时间: 2024-06-03 13:07:12 浏览: 95
This code is checking whether a directory named "model_dir" exists in the current working directory. If it does not exist, then it creates the directory using the os library's "makedirs" function. This is typically used to ensure that a directory exists before writing or saving files to it.
相关问题
if not os.path.exists(self.model_save_dir): os.makedirs(self.model_save_dir)
这段代码应该也是在某个类的初始化方法中出现的。它的作用是检查模型保存目录是否存在,如果不存在则创建该目录。具体含义如下:
- `self.model_save_dir`:表示模型保存目录的路径,应该是该类的一个属性。
- `os.path.exists(self.model_save_dir)`:判断模型保存目录是否存在。
- `os.makedirs(self.model_save_dir)`:如果模型保存目录不存在,则创建该目录。
global args args = parser.parse_args() os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" os.environ["CUDA_VISIBLE_DEVICES"] = "0" device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # Create save directory if not os.path.exists(args.save_dir): os.makedirs(args.save_dir) model_dir = "./%s/%s_layer_%d_lr_%.4f_ratio_%.2f" % (args.save_dir, args.model, args.layer_num, args.lr, args.sensing_rate) log_file_name = "%s/%s_layer_%d_lr_%.4f_ratio_%d.txt" % (model_dir, args.model, args.layer_num, args.lr, args.sensing_rate) if not os.path.exists(model_dir): print("model_dir:", model_dir) os.mkdir(model_dir) torch.backends.cudnn.benchmark = True
这段代码是一个 PyTorch 训练脚本的一部分。首先,它通过 argparse 模块解析命令行参数。然后,它设置了 CUDA 环境变量,指定使用 GPU 进行训练。接着,它创建了一个保存模型的目录,如果目录不存在的话就会创建。其中,模型路径的命名规则为“save_dir/model_layer_层数_lr_学习率_ratio_感知率”。同时,它还创建了一个日志文件,用于保存训练过程中的指标和日志信息。如果模型目录不存在,它还会对其进行创建。最后,它启用了一个 PyTorch 的优化器加速库,以加速训练过程。
阅读全文