解释代码 for index, (x, y) in tqdm(enumerate(zip(X_train, Y_train)), total=len(X_train)): save_dir = os.path.join(train_dir, str(y)) if not os.path.exists(save_dir): os.makedirs(save_dir) np.save(os.path.join(save_dir, str(index).zfill(5) + '.npy'), x) for index, (x, y) in tqdm(enumerate(zip(X_val, Y_val)), total=len(X_val)): save_dir = os.path.join(val_dir, str(y)) if not os.path.exists(save_dir): os.makedirs(save_dir) np.save(os.path.join(save_dir, str(index).zfill(5) + '.npy'), x) for index, (x, y) in tqdm(enumerate(zip(X_test, Y_test)), total=len(X_test)): save_dir = os.path.join(test_dir, str(y)) if not os.path.exists(save_dir): os.makedirs(save_dir) np.save(os.path.join(save_dir, str(index).zfill(5) + '.npy'), x)
时间: 2023-06-24 16:09:12 浏览: 152
这段代码的作用是将训练集、验证集和测试集中的数据按照其对应的标签(即y值)保存到不同的文件夹中。具体而言,代码中先使用zip函数将每个训练样本x和其对应的标签y合并成一个元组,然后使用enumerate函数给每个元组加上索引index。接着,使用tqdm库显示进度条,将每个元组中的x保存为一个.npy文件,并将该文件保存到一个名为save_dir的文件夹中,该文件夹的路径为train_dir/val_dir/test_dir + str(y),其中train_dir/val_dir/test_dir为存储训练集/验证集/测试集的根目录。如果对应的文件夹不存在,则使用os.makedirs()函数创建该文件夹。这段代码的最终效果是将训练集、验证集和测试集中的所有数据按照其对应的标签分别保存到不同的文件夹中。
相关问题
详细解释代码if __name__ == '__main__': (mods, snrs, lbl), (X_train, Y_train), (X_val, Y_val), (X_test, Y_test) = load_data() train_dir = 'dataset/RML2016/train/' val_dir = 'dataset/RML2016/val/' test_dir = 'dataset/RML2016/test/' # 全部数据 for index, (x, y) in tqdm(enumerate(zip(X_train, Y_train)), total=len(X_train)): save_dir = os.path.join(train_dir, str(y)) if not os.path.exists(save_dir): os.makedirs(save_dir) np.save(os.path.join(save_dir, str(index).zfill(5) + '.npy'), x) for index, (x, y) in tqdm(enumerate(zip(X_val, Y_val)), total=len(X_val)): save_dir = os.path.join(val_dir, str(y)) if not os.path.exists(save_dir): os.makedirs(save_dir) np.save(os.path.join(save_dir, str(index).zfill(5) + '.npy'), x) for index, (x, y) in tqdm(enumerate(zip(X_test, Y_test)), total=len(X_test)): save_dir = os.path.join(test_dir, str(y)) if not os.path.exists(save_dir): os.makedirs(save_dir) np.save(os.path.join(save_dir, str(index).zfill(5) + '.npy'), x)
这段代码是一个数据预处理的过程。首先通过 `load_data()` 函数加载数据,得到了三个元组:`(mods, snrs, lbl)` 表示调制方式和信噪比的标签,`(X_train, Y_train)` 表示训练集的数据和标签,`(X_val, Y_val)` 表示验证集的数据和标签,`(X_test, Y_test)` 表示测试集的数据和标签。接着,代码将数据按照标签分类保存到不同的目录下。
具体来说,代码通过 `enumerate()` 函数遍历数据,返回数据的下标和对应的元素。然后对于每个数据元素,将其保存到相应的目录下。如果目录不存在,则需要先创建目录。`str(index).zfill(5)` 是将下标转换成字符串,并在前面补0,使得文件名的数字部分总共有5位。最后,使用 `np.save()` 函数保存数据到 `.npy` 文件中。
cycle GAN代码
这里是一个简单的CycleGAN代码示例,使用PyTorch实现。CycleGAN是一种无监督的图像转换模型,可以将一类图像转换为另一类图像。
```python
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision.transforms as transforms
from torch.utils.data import Dataset, DataLoader
from PIL import Image
class CycleGANDataset(Dataset):
def __init__(self, root_dir, transform=None):
self.root_dir = root_dir
self.img_names = os.listdir(root_dir)
self.transform = transform
def __len__(self):
return len(self.img_names)
def __getitem__(self, idx):
img_name = self.img_names[idx]
img_path = os.path.join(self.root_dir, img_name)
image = Image.open(img_path).convert('RGB')
if self.transform:
image = self.transform(image)
return image
class Generator(nn.Module):
def __init__(self):
super(Generator, self).__init__()
self.encoder = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=4, stride=2, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(64, 128, kernel_size=4, stride=2, padding=1),
nn.BatchNorm2d(128),
nn.ReLU(inplace=True),
nn.Conv2d(128, 256, kernel_size=4, stride=2, padding=1),
nn.BatchNorm2d(256),
nn.ReLU(inplace=True),
nn.Conv2d(256, 512, kernel_size=4, stride=2, padding=1),
nn.BatchNorm2d(512),
nn.ReLU(inplace=True),
nn.Conv2d(512, 512, kernel_size=4, stride=2, padding=1),
nn.BatchNorm2d(512),
nn.ReLU(inplace=True),
nn.Conv2d(512, 512, kernel_size=4, stride=2, padding=1),
nn.BatchNorm2d(512),
nn.ReLU(inplace=True)
)
self.decoder = nn.Sequential(
nn.ConvTranspose2d(512, 512, kernel_size=4, stride=2, padding=1),
nn.BatchNorm2d(512),
nn.ReLU(inplace=True),
nn.ConvTranspose2d(512, 512, kernel_size=4, stride=2, padding=1),
nn.BatchNorm2d(512),
nn.ReLU(inplace=True),
nn.ConvTranspose2d(512, 256, kernel_size=4, stride=2, padding=1),
nn.BatchNorm2d(256),
nn.ReLU(inplace=True),
nn.ConvTranspose2d(256, 128, kernel_size=4, stride=2, padding=1),
nn.BatchNorm2d(128),
nn.ReLU(inplace=True),
nn.ConvTranspose2d(128, 64, kernel_size=4, stride=2, padding=1),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True),
nn.ConvTranspose2d(64, 3, kernel_size=4, stride=2, padding=1),
nn.Tanh()
)
def forward(self, x):
encoded = self.encoder(x)
decoded = self.decoder(encoded)
return decoded
class Discriminator(nn.Module):
def __init__(self):
super(Discriminator, self).__init__()
self.conv1 = nn.Conv2d(3, 64, kernel_size=4, stride=2, padding=1)
self.conv2 = nn.Conv2d(64, 128, kernel_size=4, stride=2, padding=1)
self.bn2 = nn.BatchNorm2d(128)
self.conv3 = nn.Conv2d(128, 256, kernel_size=4, stride=2, padding=1)
self.bn3 = nn.BatchNorm2d(256)
self.conv4 = nn.Conv2d(256, 512, kernel_size=4, stride=1, padding=1)
self.bn4 = nn.BatchNorm2d(512)
self.conv5 = nn.Conv2d(512, 1, kernel_size=4, stride=1, padding=1)
def forward(self, x):
x = nn.functional.leaky_relu(self.conv1(x), 0.2, inplace=True)
x = nn.functional.leaky_relu(self.bn2(self.conv2(x)), 0.2, inplace=True)
x = nn.functional.leaky_relu(self.bn3(self.conv3(x)), 0.2, inplace=True)
x = nn.functional.leaky_relu(self.bn4(self.conv4(x)), 0.2, inplace=True)
x = torch.sigmoid(self.conv5(x))
return x
class CycleGAN():
def __init__(self, device, lr=0.0002, lambda_cycle=10):
self.device = device
self.generator_A = Generator().to(device)
self.generator_B = Generator().to(device)
self.discriminator_A = Discriminator().to(device)
self.discriminator_B = Discriminator().to(device)
self.optimizer_G = optim.Adam(list(self.generator_A.parameters()) + list(self.generator_B.parameters()), lr=lr, betas=(0.5, 0.999))
self.optimizer_D = optim.Adam(list(self.discriminator_A.parameters()) + list(self.discriminator_B.parameters()), lr=lr, betas=(0.5, 0.999))
self.criterion_cycle = nn.L1Loss()
self.criterion_adv = nn.BCELoss()
self.lambda_cycle = lambda_cycle
def train(self, dataloader_A, dataloader_B, num_epochs):
self.generator_A.train()
self.generator_B.train()
self.discriminator_A.train()
self.discriminator_B.train()
for epoch in range(num_epochs):
for i, (real_A, real_B) in enumerate(zip(dataloader_A, dataloader_B)):
# Move data to device
real_A, real_B = real_A.to(self.device), real_B.to(self.device)
# Train generators
self.optimizer_G.zero_grad()
# Adversarial loss
fake_B = self.generator_A(real_A)
pred_fake_B = self.discriminator_B(fake_B)
loss_adv_B = self.criterion_adv(pred_fake_B, torch.ones_like(pred_fake_B))
fake_A = self.generator_B(real_B)
pred_fake_A = self.discriminator_A(fake_A)
loss_adv_A = self.criterion_adv(pred_fake_A, torch.ones_like(pred_fake_A))
# Cycle consistency loss
cycle_A = self.generator_B(fake_B)
loss_cycle_A = self.criterion_cycle(cycle_A, real_A)
cycle_B = self.generator_A(fake_A)
loss_cycle_B = self.criterion_cycle(cycle_B, real_B)
# Total generator loss
loss_G = loss_adv_A + loss_adv_B + self.lambda_cycle * (loss_cycle_A + loss_cycle_B)
loss_G.backward()
self.optimizer_G.step()
# Train discriminators
self.optimizer_D.zero_grad()
# Real loss
pred_real_A = self.discriminator_A(real_A)
loss_real_A = self.criterion_adv(pred_real_A, torch.ones_like(pred_real_A))
pred_real_B = self.discriminator_B(real_B)
loss_real_B = self.criterion_adv(pred_real_B, torch.ones_like(pred_real_B))
# Fake loss
pred_fake_A = self.discriminator_A(fake_A.detach())
loss_fake_A = self.criterion_adv(pred_fake_A, torch.zeros_like(pred_fake_A))
pred_fake_B = self.discriminator_B(fake_B.detach())
loss_fake_B = self.criterion_adv(pred_fake_B, torch.zeros_like(pred_fake_B))
# Total discriminator loss
loss_D = (loss_real_A + loss_fake_A + loss_real_B + loss_fake_B) * 0.25
loss_D.backward()
self.optimizer_D.step()
# Print loss
if i % 100 == 0:
print('[Epoch %d/%d] [Batch %d/%d] [D loss: %.4f] [G loss: %.4f]' %
(epoch+1, num_epochs, i+1, min(len(dataloader_A), len(dataloader_B)), loss_D.item(), loss_G.item()))
# Example usage
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
transform = transforms.Compose([transforms.Resize(256), transforms.RandomCrop(256), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
dataset_A = CycleGANDataset('path/to/dataset_A', transform=transform)
dataset_B = CycleGANDataset('path/to/dataset_B', transform=transform)
dataloader_A = DataLoader(dataset_A, batch_size=1, shuffle=True)
dataloader_B = DataLoader(dataset_B, batch_size=1, shuffle=True)
cyclegan = CycleGAN(device, lr=0.0002, lambda_cycle=10)
cyclegan.train(dataloader_A, dataloader_B, num_epochs=200)
```
阅读全文