keras实现transformer时间序列预测模型python代码
时间: 2023-04-06 14:04:36 浏览: 198
我可以回答这个问题。以下是一个使用Keras实现Transformer时间序列预测模型的Python代码示例:
```python
import numpy as np
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
# 定义Transformer模型
class TransformerModel(tf.keras.Model):
def __init__(self, num_layers, d_model, num_heads, dff, input_vocab_size, target_vocab_size, pe_input, pe_target, rate=0.1):
super(TransformerModel, self).__init__()
self.encoder = layers.Encoder(num_layers, d_model, num_heads, dff, input_vocab_size, pe_input, rate)
self.decoder = layers.Decoder(num_layers, d_model, num_heads, dff, target_vocab_size, pe_target, rate)
self.final_layer = tf.keras.layers.Dense(target_vocab_size)
def call(self, inp, tar, training, enc_padding_mask, look_ahead_mask, dec_padding_mask):
enc_output = self.encoder(inp, training, enc_padding_mask) # (batch_size, inp_seq_len, d_model)
# dec_output.shape == (batch_size, tar_seq_len, d_model)
dec_output, attention_weights = self.decoder(tar, enc_output, training, look_ahead_mask, dec_padding_mask)
final_output = self.final_layer(dec_output) # (batch_size, tar_seq_len, target_vocab_size)
return final_output, attention_weights
# 定义损失函数
def loss_function(real, pred):
loss_object = tf.keras.losses.MeanSquaredError()
mask = tf.math.logical_not(tf.math.equal(real, 0))
loss_ = loss_object(real, pred)
mask = tf.cast(mask, dtype=loss_.dtype)
loss_ *= mask
return tf.reduce_mean(loss_)
# 定义学习率
class CustomSchedule(tf.keras.optimizers.schedules.LearningRateSchedule):
def __init__(self, d_model, warmup_steps=4000):
super(CustomSchedule, self).__init__()
self.d_model = d_model
self.d_model = tf.cast(self.d_model, tf.float32)
self.warmup_steps = warmup_steps
def __call__(self, step):
arg1 = tf.math.rsqrt(step)
arg2 = step * (self.warmup_steps ** -1.5)
return tf.math.rsqrt(self.d_model) * tf.math.minimum(arg1, arg2)
# 定义训练步骤
def train_step(inp, tar, targ_real, encoder, decoder, optimizer, tar_inp_padding_mask, look_ahead_mask, tar_padding_mask):
with tf.GradientTape() as tape:
predictions, _ = transformer(inp, tar, True, tar_inp_padding_mask, look_ahead_mask, tar_padding_mask)
loss = loss_function(targ_real, predictions)
gradients = tape.gradient(loss, transformer.trainable_variables)
optimizer.apply_gradients(zip(gradients, transformer.trainable_variables))
return loss
# 定义数据集
def get_dataset():
# TODO: 从数据集中获取数据
return inp, tar
# 定义超参数
num_layers = 4
d_model = 128
dff = 512
num_heads = 8
input_vocab_size = 10000
target_vocab_size = 10000
dropout_rate = 0.1
# 初始化Transformer模型
transformer = TransformerModel(num_layers, d_model, num_heads, dff, input_vocab_size, target_vocab_size, pe_input=input_vocab_size, pe_target=target_vocab_size, rate=dropout_rate)
# 定义优化器
learning_rate = CustomSchedule(d_model)
optimizer = tf.keras.optimizers.Adam(learning_rate, beta_1=0.9, beta_2=0.98, epsilon=1e-9)
# 训练模型
EPOCHS = 20
for epoch in range(EPOCHS):
dataset = get_dataset()
total_loss = 0
for (batch, (inp, tar)) in enumerate(dataset):
tar_real = tar[:, 1:]
tar_inp_padding_mask, look_ahead_mask, tar_padding_mask = create_masks(inp, tar_real)
batch_loss = train_step(inp, tar, tar_real, transformer, optimizer, tar_inp_padding_mask, look_ahead_mask, tar_padding_mask)
total_loss += batch_loss
if batch % 100 == 0:
print('Epoch {} Batch {} Loss {:.4f}'.format(epoch + 1, batch, batch_loss.numpy()))
print('Epoch {} Loss {:.4f}'.format(epoch + 1, total_loss / (batch + 1)))
```
阅读全文