如何使用gym.make(‘CartPole-v1’)函数创建CartPole游戏环境
时间: 2024-02-22 09:00:56 浏览: 164
要使用`gym.make('CartPole-v1')`创建 CartPole 游戏环境,您需要先安装 OpenAI Gym 库,然后导入 Gym 库和 NumPy 库。接下来,您可以使用下面的代码创建 CartPole-v1 游戏环境并将其赋值给一个变量:
```python
import gym
import numpy as np
env = gym.make('CartPole-v1')
```
注意,您需要确保您的计算机上已经安装了 CartPole-v1 游戏环境的依赖项。如果您遇到任何问题,请查阅 OpenAI Gym 的官方文档。
相关问题
import tensorflow as tf import numpy as np import gym # 创建 CartPole 游戏环境 env = gym.make('CartPole-v1') # 定义神经网络模型 model = tf.keras.models.Sequential([ tf.keras.layers.Dense(24, activation='relu', input_shape=(4,)), tf.keras.layers.Dense(24, activation='relu'), tf.keras.layers.Dense(2, activation='linear') ]) # 定义优化器和损失函数 optimizer = tf.keras.optimizers.Adam() loss_fn = tf.keras.losses.MeanSquaredError() # 定义超参数 gamma = 0.99 # 折扣因子 epsilon = 1.0 # ε-贪心策略中的初始 ε 值 epsilon_min = 0.01 # ε-贪心策略中的最小 ε 值 epsilon_decay = 0.995 # ε-贪心策略中的衰减值 batch_size = 32 # 每个批次的样本数量 memory = [] # 记忆池 # 定义动作选择函数 def choose_action(state): if np.random.rand() < epsilon: return env.action_space.sample() else: Q_values = model.predict(state[np.newaxis]) return np.argmax(Q_values[0]) # 定义经验回放函数 def replay(batch_size): batch = np.random.choice(len(memory), batch_size, replace=False) for index in batch: state, action, reward, next_state, done = memory[index] target = model.predict(state[np.newaxis]) if done: target[0][action] = reward else: Q_future = np.max(model.predict(next_state[np.newaxis])[0]) target[0][action] = reward + Q_future * gamma model.fit(state[np.newaxis], target, epochs=1, verbose=0) # 训练模型 for episode in range(1000): state = env.reset() done = False total_reward = 0 while not done: action = choose_action(state) next_state, reward, done, _ = env.step(action) memory.append((state, action, reward, next_state, done)) state = next_state total_reward += reward if len(memory) > batch_size: replay(batch_size) epsilon = max(epsilon_min, epsilon * epsilon_decay) print("Episode {}: Score = {}, ε = {:.2f}".format(episode, total_reward, epsilon))next_state, reward, done, _ = env.step(action) ValueError: too many values to unpack (expected 4)优化代码
问题出现在最后一个环节中。根据 OpenAI Gym 的文档,CartPole-v1 环境的 step() 函数返回的是四个值,分别是下一个状态、本次动作的奖励、游戏是否结束和一些额外信息。而在原始代码中,使用了一个 _ 变量来占位,但实际上返回的值个数超过了 4,导致程序报错。解决这个问题的方法是将 _ 变量改成一个列表变量,如下所示:
```python
next_state, reward, done, info = env.step(action)
```
同时,建议将神经网络模型的优化器改成 RMSprop,这是一个更加适合强化学习问题的优化器。最后,为了更好地观察训练效果,可以将每个回合的得分输出到日志中,而不是只输出最后一个回合的得分。下面是修改后的代码:
```python
import tensorflow as tf
import numpy as np
import gym
# 创建 CartPole 游戏环境
env = gym.make('CartPole-v1')
# 定义神经网络模型
model = tf.keras.models.Sequential([
tf.keras.layers.Dense(24, activation='relu', input_shape=(4,)),
tf.keras.layers.Dense(24, activation='relu'),
tf.keras.layers.Dense(2, activation='linear')
])
# 定义优化器和损失函数
optimizer = tf.keras.optimizers.RMSprop(learning_rate=0.001)
loss_fn = tf.keras.losses.MeanSquaredError()
# 定义超参数
gamma = 0.99 # 折扣因子
epsilon = 1.0 # ε-贪心策略中的初始 ε 值
epsilon_min = 0.01 # ε-贪心策略中的最小 ε 值
epsilon_decay = 0.995 # ε-贪心策略中的衰减值
batch_size = 32 # 每个批次的样本数量
memory = [] # 记忆池
# 定义动作选择函数
def choose_action(state):
if np.random.rand() < epsilon:
return env.action_space.sample()
else:
Q_values = model.predict(state[np.newaxis])
return np.argmax(Q_values[0])
# 定义经验回放函数
def replay(batch_size):
batch = np.random.choice(len(memory), batch_size, replace=False)
for index in batch:
state, action, reward, next_state, done = memory[index]
target = model.predict(state[np.newaxis])
if done:
target[0][action] = reward
else:
Q_future = np.max(model.predict(next_state[np.newaxis])[0])
target[0][action] = reward + Q_future * gamma
model.fit(state[np.newaxis], target, epochs=1, verbose=0, optimizer=optimizer, loss=loss_fn)
# 训练模型
for episode in range(1000):
state = env.reset()
done = False
total_reward = 0
while not done:
action = choose_action(state)
next_state, reward, done, info = env.step(action)
memory.append((state, action, reward, next_state, done))
state = next_state
total_reward += reward
if len(memory) > batch_size:
replay(batch_size)
epsilon = max(epsilon_min, epsilon * epsilon_decay)
print("Episode {}: Score = {:.2f}, ε = {:.2f}".format(episode, total_reward, epsilon))
```
注意,由于 RMSprop 的学习率比 Adam 更小,因此需要将其设为 0.001。如果学习率太高,会导致训练不稳定或不收敛。
pendulum-v0里的代码怎么改能适合Pendulum-v1环境
为了适应Pendulum-v1环境,需要将以下代码进行更改:
1. 引入新的环境
Pendulum-v1的环境名称为"Pendulum-v1",因此需要将原来的代码:
```python
import gym
env = gym.make('Pendulum-v0')
```
改为:
```python
import gym
env = gym.make('Pendulum-v1')
```
2. 修改状态空间和动作空间
Pendulum-v1的状态空间和动作空间与Pendulum-v0略有不同。具体来说,Pendulum-v1的状态空间为一个3维向量,代表了摆杆的角度、角速度和角加速度;动作空间为一个1维向量,代表了施加到摆杆上的扭矩力。
因此,需要将原来的代码:
```python
state_space = env.observation_space.shape[0]
action_space = env.action_space.shape[0]
```
修改为:
```python
state_space = env.observation_space.shape[0]
action_space = env.action_space.shape[0]
```
3. 修改奖励函数
Pendulum-v1的奖励函数与Pendulum-v0略有不同。具体来说,Pendulum-v1的奖励函数为:
$$
r(s,a,s') = -\theta^2 - 0.1\omega^2 - 0.001a^2
$$
其中,$\theta$表示摆杆的角度,$\omega$表示摆杆的角速度,$a$表示施加到摆杆上的扭矩力。
因此,需要将原来的代码:
```python
reward = -(theta ** 2 + 0.1 * theta_dt ** 2 + 0.001 * action ** 2)
```
修改为:
```python
reward = -(theta ** 2 + 0.1 * omega ** 2 + 0.001 * action ** 2)
```
完整代码如下所示:
```python
import gym
import numpy as np
from keras.models import Sequential
from keras.layers import Dense
from keras.optimizers import Adam
env = gym.make('Pendulum-v1')
state_space = env.observation_space.shape[0]
action_space = env.action_space.shape[0]
model = Sequential()
model.add(Dense(64, input_shape=(state_space,), activation='relu'))
model.add(Dense(64, activation='relu'))
model.add(Dense(action_space, activation='linear'))
model.compile(loss='mse', optimizer=Adam())
gamma = 0.99
epsilon = 1.0
epsilon_decay = 0.995
epsilon_min = 0.01
episodes = 500
for episode in range(episodes):
state = env.reset()
done = False
score = 0
while not done:
if np.random.random() < epsilon:
action = env.action_space.sample()
else:
action = model.predict(state.reshape(1, state_space))[0]
next_state, reward, done, info = env.step(action)
theta, theta_dt = next_state[0], next_state[1]
score += reward
reward = -(theta ** 2 + 0.1 * theta_dt ** 2 + 0.001 * action ** 2)
target = reward + gamma * np.amax(model.predict(next_state.reshape(1, state_space))[0])
target_f = model.predict(state.reshape(1, state_space))
target_f[0][np.argmax(action)] = target
model.fit(state.reshape(1, state_space), target_f, epochs=1, verbose=0)
state = next_state
epsilon *= epsilon_decay
epsilon = max(epsilon_min, epsilon)
print("Episode: {}, Score: {:.2f}".format(episode, score))
```
阅读全文