编写一个actor—critic算法的函数
时间: 2023-09-28 11:05:57 浏览: 98
Actor-Critic算法是一种强化学习算法,它包含两个部分:一个Actor和一个Critic。Actor是策略网络,负责根据当前状态选择一个动作;Critic是价值网络,负责评估当前状态的价值。下面是一个简单的Actor-Critic算法的函数实现(Python实现):
```python
import numpy as np
import tensorflow as tf
class ActorCritic:
def __init__(self, state_dim, action_dim, learning_rate=0.001, gamma=0.99):
self.state_dim = state_dim
self.action_dim = action_dim
self.learning_rate = learning_rate
self.gamma = gamma
# 创建Actor网络
self.actor = tf.keras.Sequential([
tf.keras.layers.Dense(64, activation='relu', input_shape=(state_dim,)),
tf.keras.layers.Dense(64, activation='relu'),
tf.keras.layers.Dense(action_dim, activation='softmax')
])
# 创建Critic网络
self.critic = tf.keras.Sequential([
tf.keras.layers.Dense(64, activation='relu', input_shape=(state_dim,)),
tf.keras.layers.Dense(64, activation='relu'),
tf.keras.layers.Dense(1)
])
# 创建优化器
self.actor_optimizer = tf.optimizers.Adam(learning_rate=learning_rate)
self.critic_optimizer = tf.optimizers.Adam(learning_rate=learning_rate)
def act(self, state):
# 根据当前状态选择一个动作
state = state.reshape(1, self.state_dim)
prob = self.actor.predict(state)[0]
action = np.random.choice(self.action_dim, p=prob)
return action
def learn(self, state, action, reward, next_state, done):
# 计算TD误差
state = state.reshape(1, self.state_dim)
next_state = next_state.reshape(1, self.state_dim)
td_error = reward + (1 - int(done)) * self.gamma * self.critic.predict(next_state) - self.critic.predict(state)
# 更新Critic网络
with tf.GradientTape() as tape:
critic_loss = tf.reduce_mean(tf.square(td_error))
critic_grads = tape.gradient(critic_loss, self.critic.trainable_variables)
self.critic_optimizer.apply_gradients(zip(critic_grads, self.critic.trainable_variables))
# 更新Actor网络
with tf.GradientTape() as tape:
prob = self.actor(state)[0, action]
actor_loss = -tf.math.log(prob) * td_error
actor_grads = tape.gradient(actor_loss, self.actor.trainable_variables)
self.actor_optimizer.apply_gradients(zip(actor_grads, self.actor.trainable_variables))
```
这个例子中,我们首先创建了一个ActorCritic类,它包含一个Actor网络和一个Critic网络。在`act`方法中,我们根据当前状态选择一个动作。在`learn`方法中,我们使用TD误差来更新Critic网络和Actor网络。具体来说,我们首先计算TD误差,然后使用该误差来更新Critic网络。接着,我们使用该误差来更新Actor网络,对于选择的动作,我们使用负对数概率乘以TD误差作为损失函数。最后,使用优化器来更新Actor网络和Critic网络的参数。
使用方法如下:
```python
env = gym.make('CartPole-v1')
actor_critic = ActorCritic(state_dim=4, action_dim=2)
for i in range(1000):
state = env.reset()
done = False
while not done:
action = actor_critic.act(state)
next_state, reward, done, _ = env.step(action)
actor_critic.learn(state, action, reward, next_state, done)
state = next_state
```
这个例子中,我们使用Actor-Critic算法来解决CartPole-v1环境。首先创建一个CartPole-v1环境和一个ActorCritic对象。然后进行1000轮训练,在每一轮训练中,我们使用`act`方法根据当前状态选择一个动作,然后使用`learn`方法来更新Actor网络和Critic网络。
阅读全文