若D为 x^2+y^2≤1 的上半部分,计算二重积分 I=∫∫y^2√(1-x^2dxdy)
时间: 2023-11-13 08:34:07 浏览: 251
首先,我们需要将积分域D表示出来:
D可以表示为:D={(x, y)|-1≤x≤1, 0≤y≤√(1-x^2)}
然后,我们可以将被积函数y^2√(1-x^2)改写成极坐标下的形式:
y^2√(1-x^2) = r^2sin^2θcosθ
于是,我们可以将二重积分I转化为极坐标下的形式:
I = ∫[0,π/2]∫[0,1] r^2sin^2θcosθ * r drdθ
对于θ的积分,有:
∫[0,π/2]cosθ dθ = sin(π/2) - sin(0) = 1
对于r的积分,有:
∫[0,1]r^3sin^2θ dr = (1/4)sin^2θ
因此,I = ∫[0,π/2]∫[0,1] r^2sin^2θcosθ * r drdθ = (1/4)∫[0,π/2] sin^2θ dθ = (1/4)π/4 = π/16
因此,二重积分的结果为π/16。
相关问题
若D为 x^2+y^2≤1 的上半部分,计算二重积分 I=∫∫y^2√(1-x^2)dxdy
首先,我们可以将二重积分区域 D 表示为极坐标形式:
$$D: 0 \leq r \leq 1, -\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}$$
然后,我们可以使用极坐标变换来计算该二重积分。具体来说,我们可以将 $y^2\sqrt{1-x^2}$ 表示为 $r$ 和 $\theta$ 的函数:
$$y^2\sqrt{1-x^2} = r^2\sin^2\theta \sqrt{1-r^2\cos^2\theta}$$
因此,原始积分可以表示为:
$$I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\int_0^1r^2\sin^2\theta\sqrt{1-r^2\cos^2\theta}r\,dr\,d\theta$$
接下来,我们可以通过对 $r$ 进行积分来计算该二重积分。具体来说,我们可以使用代换 $u = 1-r^2\cos^2\theta$,$du = -2r\cos^2\theta\,dr$:
$$\begin{aligned} I &= \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\int_0^1r^3\sin^2\theta\sqrt{1-r^2\cos^2\theta}\,dr\,d\theta \\ &= \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\int_0^1\frac{1}{2}\sin^2\theta\sqrt{u}\,du\,d\theta \\ &= \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\left[\frac{1}{3}u^\frac{3}{2}\sin^2\theta\right]_0^1\,d\theta \\ &= \frac{1}{3}\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\sin^2\theta\,d\theta \\ &= \frac{1}{6}\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}(1-\cos2\theta)\,d\theta \\ &= \frac{\pi}{6} \end{aligned}$$
因此,原始积分的值为 $\frac{\pi}{6}$。
若D为 x^2+y^2≤1 的上半部分,计算二重积分 I=∫∫[y^2√(1-x^2)]dxdy
首先,我们需要将积分区域表示出来。由于题目中给出了条件 $x^2+y^2\leq 1$,因此这是一个以原点为圆心,半径为 $1$ 的圆,也就是单位圆。而由于积分区域是上半部分,因此我们只需要考虑圆的上半部分:
![image.png](attachment:image.png)
接下来,我们对积分式进行变形:
$$
\begin{aligned}
I &= \iint_D y^2\sqrt{1-x^2} \mathrm{d}x\mathrm{d}y \\
&= \int_{-1}^{1} \int_{0}^{\sqrt{1-x^2}} y^2\sqrt{1-x^2} \mathrm{d}y \mathrm{d}x \quad (\text{由于上下半圆对称,只需计算}\ y\geq 0\ \text{的部分})\\
&= \int_{-1}^{1} \frac{1}{3}(1-x^2)^{\frac{3}{2}} \mathrm{d}x \quad (\text{积分}\ y^2\ \text{时,}\ y\ \text{的范围是}\ [0, \sqrt{1-x^2}],\text{故需要对}\ y\ \text{积分})\\
&= \frac{1}{3}\int_{-1}^{1} (1-x^2)^{\frac{3}{2}} \mathrm{d}(1-x^2) \quad (\text{令}\ 1-x^2=t)\\
&= \frac{1}{3}\int_{0}^{1} t^{\frac{3}{2}} \mathrm{d}t \quad (\text{替换积分变量})\\
&= \frac{2}{5}
\end{aligned}
$$
因此,所求的二重积分的值为 $\frac{2}{5}$。
阅读全文