Traceback (most recent call last): File "D:\daima\KalmanNet_TSP-main\main_lor_DT.py", line 204, in <module> [MSE_test_linear_arr, MSE_test_linear_avg, MSE_test_dB_avg,Knet_out,RunTime] = KNet_Pipeline.NNTest(sys_model_partial, test_input, test_target, path_results) File "D:\daima\KalmanNet_TSP-main\Pipelines\Pipeline_EKF.py", line 303, in NNTest x_out_test[:,:, t] = torch.squeeze(self.model(torch.unsqueeze(test_input[:,:, t],2))) File "C:\Users\adminstor\anaconda3\envs\python39\lib\site-packages\torch\nn\modules\module.py", line 1102, in _call_impl return forward_call(*input, **kwargs) File "D:\daima\KalmanNet_TSP-main\KNet\KalmanNet_nn.py", line 322, in forward return self.KNet_step(y) File "D:\daima\KalmanNet_TSP-main\KNet\KalmanNet_nn.py", line 229, in KNet_step self.step_KGain_est(y) File "D:\daima\KalmanNet_TSP-main\KNet\KalmanNet_nn.py", line 215, in step_KGain_est KG = self.KGain_step(obs_diff, obs_innov_diff, fw_evol_diff, fw_update_diff) File "D:\daima\KalmanNet_TSP-main\KNet\KalmanNet_nn.py", line 289, in KGain_step out_FC7 = self.FC7(in_FC7) File "C:\Users\adminstor\anaconda3\envs\python39\lib\site-packages\torch\nn\modules\module.py", line 1102, in _call_impl return forward_call(*input, **kwargs) File "C:\Users\adminstor\anaconda3\envs\python39\lib\site-packages\torch\nn\modules\container.py", line 141, in forward input = module(input) File "C:\Users\adminstor\anaconda3\envs\python39\lib\site-packages\torch\nn\modules\module.py", line 1102, in _call_impl return forward_call(*input, **kwargs) File "C:\Users\adminstor\anaconda3\envs\python39\lib\site-packages\torch\nn\modules\linear.py", line 103, in forward return F.linear(input, self.weight, self.bias) File "C:\Users\adminstor\anaconda3\envs\python39\lib\site-packages\torch\nn\functional.py", line 1848, in linear return torch._C._nn.linear(input, weight, bias) RuntimeError: mat1 and mat2 shapes cannot be multiplied (200x6 and 2x10)
时间: 2023-07-24 11:16:14 浏览: 179
浅谈Python traceback的优雅处理
这个错误通常是由于张量形状不匹配导致的。根据错误信息,`mat1`和`mat2`的形状无法进行矩阵相乘,因为`mat1`的形状是(200x6),而`mat2`的形状是(2x10)。
要解决这个问题,你需要调整输入张量的形状,使其能够进行矩阵乘法操作。这可能需要检查你的模型结构和输入数据的维度是否正确。
另外,你还可以使用`torch.matmul()`函数来执行矩阵乘法,它能够自动处理形状不匹配的情况。例如:
```python
output = torch.matmul(mat1, mat2)
```
请检查你的代码中涉及到矩阵乘法的部分,确保输入的形状是匹配的。如果还有其他问题,请提供更多的代码和上下文信息,以便我能够更好地帮助你。
阅读全文