Traceback (most recent call last): File "D:\daima\KalmanNet_TSP-main\main_linear_canonical.py", line 174, in <module> [MSE_test_linear_arr, MSE_test_linear_avg, MSE_test_dB_avg,knet_out,RunTime] = KalmanNet_Pipeline.NNTest(sys_model, test_input, test_target, path_results) File "D:\daima\KalmanNet_TSP-main\Pipelines\Pipeline_EKF.py", line 300, in NNTest self.model.InitSequence(SysModel.m1x_0.reshape(1,SysModel.m,1).repeat(self.N_T,1,1), SysModel.T_test) File "D:\daima\KalmanNet_TSP-main\KNet\KalmanNet_nn.py", line 186, in InitSequence self.y_previous = self.h(self.m1x_posterior) File "D:\daima\KalmanNet_TSP-main\Simulations\Linear_sysmdl.py", line 67, in h return torch.bmm(batched_H, x) RuntimeError: batch1 dim 2 must match batch2 dim 1
时间: 2024-04-22 20:25:26 浏览: 111
这是一个运行时错误,错误信息提示在执行 torch.bmm(batched_H, x) 时发生了问题。具体错误是 "RuntimeError: batch1 dim 2 must match batch2 dim 1",这意味着输入张量的维度不匹配。
根据错误信息,可以看到问题出现在文件 "D:\daima\KalmanNet_TSP-main\Simulations\Linear_sysmdl.py" 的第 67 行。在这个文件中,函数 h 被调用,并且其中使用了 torch.bmm 函数执行批量矩阵乘法。
根据错误信息,推测 batched_H 是一个形状为 [batch_size, m, n] 的张量,而 x 是一个形状为 [batch_size, n, p] 的张量。在执行 torch.bmm(batched_H, x) 时,要求 batched_H 的最后一个维度(维度2)的大小必须与 x 的倒数第二个维度(维度1)的大小相匹配,以便进行矩阵乘法运算。
检查一下你的代码,确认 batched_H 和 x 的维度是否满足这个要求。如果维度不匹配,你需要调整相应的代码,使它们的维度能够匹配。
希望这能帮到你!如果还有其他问题,请随时提问。
相关问题
Traceback (most recent call last): File "D:\daima\KalmanNet_TSP-main\main_lor_DT_NLobs.py", line 148, in <module> [MSE_test_linear_arr, MSE_test_linear_avg, MSE_test_dB_avg,knet_out,RunTime] = KalmanNet_Pipeline.NNTest(sys_model, test_input, test_target, path_results) File "D:\daima\KalmanNet_TSP-main\Pipelines\Pipeline_EKF.py", line 308, in NNTest x_out_test[:,:, t] = torch.squeeze(self.model(torch.unsqueeze(test_input[:,:, t],2))) File "C:\Users\adminstor\anaconda3\envs\python39\lib\site-packages\torch\nn\modules\module.py", line 1102, in _call_impl return forward_call(*input, **kwargs) File "D:\daima\KalmanNet_TSP-main\KNet\KalmanNet_nn.py", line 322, in forward return self.KNet_step(y) File "D:\daima\KalmanNet_TSP-main\KNet\KalmanNet_nn.py", line 229, in KNet_step self.step_KGain_est(y) File "D:\daima\KalmanNet_TSP-main\KNet\KalmanNet_nn.py", line 215, in step_KGain_est KG = self.KGain_step(obs_diff, obs_innov_diff, fw_evol_diff, fw_update_diff) File "D:\daima\KalmanNet_TSP-main\KNet\KalmanNet_nn.py", line 289, in KGain_step out_FC7 = self.FC7(in_FC7) File "C:\Users\adminstor\anaconda3\envs\python39\lib\site-packages\torch\nn\modules\module.py", line 1102, in _call_impl return forward_call(*input, **kwargs) File "C:\Users\adminstor\anaconda3\envs\python39\lib\site-packages\torch\nn\modules\container.py", line 141, in forward input = module(input) File "C:\Users\adminstor\anaconda3\envs\python39\lib\site-packages\torch\nn\modules\module.py", line 1102, in _call_impl return forward_call(*input, **kwargs) File "C:\Users\adminstor\anaconda3\envs\python39\lib\site-packages\torch\nn\modules\linear.py", line 103, in forward return F.linear(input, self.weight, self.bias) File "C:\Users\adminstor\anaconda3\envs\python39\lib\site-packages\torch\nn\functional.py", line 1848, in linear return torch._C._nn.linear(input, weight, bias) RuntimeError: mat1 and mat2 shapes cannot be multiplied (200x6 and 2x10)
这个错误是由于您正在尝试对形状不匹配的张量进行矩阵乘法操作,导致无法完成操作。
在这种情况下,您需要检查代码中涉及到矩阵乘法的部分,并确保输入的张量形状是兼容的。
根据错误消息的提示,问题出现在 `KGain_step()` 方法中的矩阵乘法操作。您需要检查 `KGain_step()` 方法中涉及到的张量的形状,并确保它们可以进行矩阵乘法操作。
在这里,您可以检查 `in_FC7` 张量、`self.FC7` 层的权重张量和偏置张量的形状是否匹配,以及 `out_FC7` 张量的形状是否与后续的矩阵乘法操作兼容。
请注意,根据您的具体情况,可能还需要检查其他涉及到矩阵乘法操作的部分。
希望这可以帮助您解决问题!如果还有其他问题,请随时提问。
Traceback (most recent call last): File "D:\daima\KalmanNet_TSP-main\main_lor_DT.py", line 204, in <module> [MSE_test_linear_arr, MSE_test_linear_avg, MSE_test_dB_avg,Knet_out,RunTime] = KNet_Pipeline.NNTest(sys_model_partial, test_input, test_target, path_results) File "D:\daima\KalmanNet_TSP-main\Pipelines\Pipeline_EKF.py", line 303, in NNTest x_out_test[:,:, t] = torch.squeeze(self.model(torch.unsqueeze(test_input[:,:, t],2))) File "C:\Users\adminstor\anaconda3\envs\python39\lib\site-packages\torch\nn\modules\module.py", line 1102, in _call_impl return forward_call(*input, **kwargs) File "D:\daima\KalmanNet_TSP-main\KNet\KalmanNet_nn.py", line 322, in forward return self.KNet_step(y) File "D:\daima\KalmanNet_TSP-main\KNet\KalmanNet_nn.py", line 229, in KNet_step self.step_KGain_est(y) File "D:\daima\KalmanNet_TSP-main\KNet\KalmanNet_nn.py", line 215, in step_KGain_est KG = self.KGain_step(obs_diff, obs_innov_diff, fw_evol_diff, fw_update_diff) File "D:\daima\KalmanNet_TSP-main\KNet\KalmanNet_nn.py", line 289, in KGain_step out_FC7 = self.FC7(in_FC7) File "C:\Users\adminstor\anaconda3\envs\python39\lib\site-packages\torch\nn\modules\module.py", line 1102, in _call_impl return forward_call(*input, **kwargs) File "C:\Users\adminstor\anaconda3\envs\python39\lib\site-packages\torch\nn\modules\container.py", line 141, in forward input = module(input) File "C:\Users\adminstor\anaconda3\envs\python39\lib\site-packages\torch\nn\modules\module.py", line 1102, in _call_impl return forward_call(*input, **kwargs) File "C:\Users\adminstor\anaconda3\envs\python39\lib\site-packages\torch\nn\modules\linear.py", line 103, in forward return F.linear(input, self.weight, self.bias) File "C:\Users\adminstor\anaconda3\envs\python39\lib\site-packages\torch\nn\functional.py", line 1848, in linear return torch._C._nn.linear(input, weight, bias) RuntimeError: mat1 and mat2 shapes cannot be multiplied (200x6 and 2x10)
这个错误通常是由于张量形状不匹配导致的。根据错误信息,`mat1`和`mat2`的形状无法进行矩阵相乘,因为`mat1`的形状是(200x6),而`mat2`的形状是(2x10)。
要解决这个问题,你需要调整输入张量的形状,使其能够进行矩阵乘法操作。这可能需要检查你的模型结构和输入数据的维度是否正确。
另外,你还可以使用`torch.matmul()`函数来执行矩阵乘法,它能够自动处理形状不匹配的情况。例如:
```python
output = torch.matmul(mat1, mat2)
```
请检查你的代码中涉及到矩阵乘法的部分,确保输入的形状是匹配的。如果还有其他问题,请提供更多的代码和上下文信息,以便我能够更好地帮助你。
阅读全文