yolov5-6.0中的detect.py
时间: 2023-10-18 18:53:00 浏览: 183
您好!在 YOLOv5 6.0 版本中,detect.py 是用于进行目标检测的主要脚本文件。它实现了模型加载、图像预处理、目标检测、后处理(NMS)、结果可视化等功能。
您可以通过以下命令运行 detect.py:
```
python detect.py --source <image or video path> --weights <weight file path> --conf <confidence threshold> --iou <IoU threshold> --save-txt
```
其中,参数的含义如下:
- `--source`:输入图像或视频的路径。
- `--weights`:模型权重文件的路径。
- `--conf`:置信度阈值,用于过滤低置信度的检测结果。
- `--iou`:IoU 阈值,用于非极大值抑制(NMS)。
- `--save-txt`:是否保存检测结果的文本文件。
除了上述基本参数,detect.py 还支持其他一些可选参数,例如指定输出目录、设备类型、模型类型、缩放大小等。您可以通过运行 `python detect.py --help` 来查看所有可用的参数选项和其用法说明。
需要注意的是,YOLOv5 6.0 版本是由 Ultralytics 团队开发和维护的,我不是这个团队的成员,提供的信息仅基于我对 YOLOv5 的了解。如需更详细的信息和支持,请参考官方文档或咨询 Ultralytics 团队。
相关问题
yolov5 6.0中detect.py中通过摄像头检测并绘制框的代码
以下是使用 yolov5 6.0 中的 detect.py 文件通过摄像头检测并绘制框的代码示例:
```python
import cv2
from yolov5.detect import detect, load_model_and_classes
# 加载模型和类别
model, classes = load_model_and_classes('yolov5s.pt', 'coco.names')
# 打开摄像头
cap = cv2.VideoCapture(0)
while True:
# 读取一帧图像
ret, frame = cap.read()
# 对图像进行检测
results = detect(model, classes, frame)
# 绘制检测结果
for result in results:
x1, y1, x2, y2, class_id, confidence = result
label = f"{classes[class_id]} {confidence:.2f}"
cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2)
cv2.putText(frame, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
# 显示图像
cv2.imshow('frame', frame)
# 按下 q 键退出
if cv2.waitKey(1) & 0xFF == ord('q'):
break
# 释放摄像头并关闭窗口
cap.release()
cv2.destroyAllWindows()
```
上述代码中,我们首先通过 `load_model_and_classes()` 函数加载模型和类别,接着打开摄像头,并在一个循环中读取图像并进行检测。对于每一帧图像,我们使用 `detect()` 函数进行检测,得到检测结果后,使用 `cv2.rectangle()` 和 `cv2.putText()` 函数绘制检测框和类别标签,最后使用 `cv2.imshow()` 函数显示图像,并等待用户按下 q 键退出。
怎么把yolov5 6.0的detect.py中的关于摄像头的代码提取出来
如果您想提取 YOLOv5 6.0 版本的 detect.py 中关于摄像头的代码,可以按照以下步骤进行:
1. 打开 detect.py 文件,找到以下代码:
```python
# Camera inference
elif source.isnumeric():
source = int(source)
# Start streaming
cap = cv2.VideoCapture(source)
assert cap.isOpened(), f'Failed to open {source}'
cap.set(cv2.CAP_PROP_FRAME_WIDTH, width)
cap.set(cv2.CAP_PROP_FRAME_HEIGHT, height)
fps = cap.get(cv2.CAP_PROP_FPS)
print(f'Using {source} with FPS {fps:.3f} [OK]')
for path, img, im0s, vid_cap in dataset:
if vid_path != path:
vid_path, frames = path, []
if isinstance(vid_cap, cv2.VideoCapture):
frames = vid_cap.get(cv2.CAP_PROP_FRAME_COUNT)
elif isinstance(vid_cap, int):
frames = vid_cap
else:
assert False, f'Invalid video {path}'
t1 = time_synchronized()
# Get frames
ret, frame = cap.read()
if not ret:
break
assert frame is not None, 'Image Not Found '
# Padded resize
frame = letterbox(frame, new_shape=inp_shape)[0]
# Normalize RGB
frame = frame[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416
frame = np.ascontiguousarray(frame)
# Inference
img = torch.from_numpy(frame).to(device)
img = img.half() if half else img.float() # uint8 to fp16/32
img /= 255.0 # 0 - 255 to 0.0 - 1.0
if img.ndimension() == 3:
img = img.unsqueeze(0)
# Inference
t2 = time_synchronized()
pred = model(img, augment=opt.augment)[0]
# Apply NMS
pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, classes=opt.classes, agnostic=opt.agnostic_nms)
t3 = time_synchronized()
# Process detections
for i, det in enumerate(pred): # detections per image
p, s, im0 = path, '', im0s.copy()
gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
if det is not None and len(det):
# Rescale boxes from img_size to im0 size
det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()
# Print results
for c in det[:, -1].unique():
n = (det[:, -1] == c).sum() # detections per class
s += f'{n} {names[int(c)]}s, ' # add to string
# Write results
for *xyxy, conf, cls in det:
if save_txt: # Write to file
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
with open(txt_path + '.txt', 'a') as f:
f.write(('%g ' * 5 + '\n') % (cls, *xywh)) # label format
if save_img or save_crop or save_patch: # Add bbox to image
c = int(cls) # integer class
label = None if hide_labels else (names[c] if hide_conf else f'{names[c]} {conf:.2f}')
plot_one_box(xyxy, im0, label=label, color=colors(c, True), line_thickness=3, **plot_kwargs)
if save_crop or save_patch: # Save crop
#crop = im0[int(xyxy[1]):int(xyxy[3]), int(xyxy[0]):int(xyxy[2])]
save_file = str(Path(save_dir) / Path(p).stem) + f'_{i}_{names[c]}.jpg'
cv2.imwrite(save_file, crop)
# Print results
print(f'{s}Done. ({t3 - t1:.3f}s)')
# Stream results
if view_img:
cv2.imshow(p, im0)
if cv2.waitKey(1) == ord('q'): # q to quit
raise StopIteration
if save_txt or save_img:
print(f"Results saved to {save_dir}")
if platform == 'darwin': # MacOS
os.system(f'open {save_dir}')
cap.release()
```
2. 将以上代码复制到一个新文件中
3. 删除以下代码:
```python
elif source.isnumeric():
source = int(source)
# Start streaming
cap = cv2.VideoCapture(source)
assert cap.isOpened(), f'Failed to open {source}'
cap.set(cv2.CAP_PROP_FRAME_WIDTH, width)
cap.set(cv2.CAP_PROP_FRAME_HEIGHT, height)
fps = cap.get(cv2.CAP_PROP_FPS)
print(f'Using {source} with FPS {fps:.3f} [OK]')
```
4. 将下面的代码留下来:
```python
for path, img, im0s, vid_cap in dataset:
if vid_path != path:
vid_path, frames = path, []
if isinstance(vid_cap, cv2.VideoCapture):
frames = vid_cap.get(cv2.CAP_PROP_FRAME_COUNT)
elif isinstance(vid_cap, int):
frames = vid_cap
else:
assert False, f'Invalid video {path}'
t1 = time_synchronized()
# Get frames
ret, frame = cap.read()
if not ret:
break
assert frame is not None, 'Image Not Found '
# Padded resize
frame = letterbox(frame, new_shape=inp_shape)[0]
# Normalize RGB
frame = frame[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416
frame = np.ascontiguousarray(frame)
# Inference
img = torch.from_numpy(frame).to(device)
img = img.half() if half else img.float() # uint8 to fp16/32
img /= 255.0 # 0 - 255 to 0.0 - 1.0
if img.ndimension() == 3:
img = img.unsqueeze(0)
# Inference
t2 = time_synchronized()
pred = model(img, augment=opt.augment)[0]
# Apply NMS
pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, classes=opt.classes, agnostic=opt.agnostic_nms)
t3 = time_synchronized()
# Process detections
for i, det in enumerate(pred): # detections per image
p, s, im0 = path, '', im0s.copy()
gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
if det is not None and len(det):
# Rescale boxes from img_size to im0 size
det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()
# Print results
for c in det[:, -1].unique():
n = (det[:, -1] == c).sum() # detections per class
s += f'{n} {names[int(c)]}s, ' # add to string
# Write results
for *xyxy, conf, cls in det:
if save_txt: # Write to file
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
with open(txt_path + '.txt', 'a') as f:
f.write(('%g ' * 5 + '\n') % (cls, *xywh)) # label format
if save_img or save_crop or save_patch: # Add bbox to image
c = int(cls) # integer class
label = None if hide_labels else (names[c] if hide_conf else f'{names[c]} {conf:.2f}')
plot_one_box(xyxy, im0, label=label, color=colors(c, True), line_thickness=3, **plot_kwargs)
if save_crop or save_patch: # Save crop
#crop = im0[int(xyxy[1]):int(xyxy[3]), int(xyxy[0]):int(xyxy[2])]
save_file = str(Path(save_dir) / Path(p).stem) + f'_{i}_{names[c]}.jpg'
cv2.imwrite(save_file, crop)
# Print results
print(f'{s}Done. ({t3 - t1:.3f}s)')
# Stream results
if view_img:
cv2.imshow(p, im0)
if cv2.waitKey(1) == ord('q'): # q to quit
raise StopIteration
```
这部分代码处理摄像头输入并进行推理。
5. 将提取出的代码保存到一个新文件中,例如 camera_detect.py。
现在您可以使用 camera_detect.py 进行摄像头推理。请确保在运行代码之前正确设置 YOLOv5 模型、类别和权重路径。
阅读全文