typedef union _MeterState_ST { unsigned long State; struct { unsigned char d0 : 1;

时间: 2024-02-10 09:33:14 浏览: 76
这是一个联合体声明,名为_MeterState_ST。联合体是一种特殊的数据类型,它允许多个不同的成员共享相同的内存空间。在这个联合体中,它有一个名为State的无符号长整型成员,和一个名为匿名结构体的成员,该结构体包含一个名为d0的无符号字符类型成员,它只占用1个位。 这个设计的意图可能是将一个32位的状态信息拆分为多个1位的状态信息,方便读写和处理。通过修改d0的值来修改State中对应的位的值。因为联合体成员共享内存空间,修改一个成员的值可能会影响到其他成员的值。需要注意的是,不同的编译器对于位域字段的实现和行为可能会有不同的表现,需要根据具体的编译器和平台来使用。
相关问题

typedef union _MeterState_ST { unsigned long State; struct { unsigned char d0 : 1; //d0 unsigned char d1 : 1; //d1 unsigned char d2 : 1; //d2 unsigned char d3 : 1; //d3 unsigned char d4 : 1; //d4 unsigned char d5 : 1; //d5 unsigned char d6 : 1; //d6 unsigned char d7 : 1;

这是一个联合体声明,名为_MeterState_ST。联合体是一种特殊的数据类型,它允许多个不同的成员共享相同的内存空间。在这个联合体中,它有一个名为State的无符号长整型成员,和一个名为匿名结构体的成员,该结构体包含8个名为d0~d7的无符号字符类型成员,它们分别只占用1个位。 这个设计的意图可能是将一个32位的状态信息拆分为多个1位的状态信息,方便读写和处理。通过修改d0~d7的值来修改State中对应的位的值。因为联合体成员共享内存空间,修改一个成员的值可能会影响到其他成员的值。需要注意的是,不同的编译器对于位域字段的实现和行为可能会有不同的表现,需要根据具体的编译器和平台来使用。

typedef union { unsigned short MyWord; struct { unsigned char MyLB; unsigned char MyHB; } MyB; } My 讲一下这个代码

这个代码定义了一个名为`My`的联合体(union),它包含了一个16位无符号整数`MyWord`和一个包含两个8位无符号整数`MyLB`和`MyHB`的结构体(struct)。联合体的特点是所有成员共用同一块内存空间,因此对于联合体的任何修改都会影响到其他成员。这里的目的是通过联合体来实现以不同方式访问同一变量的功能。 具体来说,联合体的`MyWord`成员和`MyB`结构体的`MyLB`和`MyHB`成员所占用的内存空间是相同的,即`MyWord`的低8位和`MyLB`相同,高8位和`MyHB`相同。因此,可以通过修改`MyWord`来同时修改`MyLB`和`MyHB`的值,也可以通过修改`MyLB`和`MyHB`来同时修改`MyWord`的值,这在一些底层编程中会比较常见。
阅读全文

相关推荐

typedef union { //uint32_t u32Data; uint64_t u64Data; struct { unsigned int IsSendBrightnessDecrease :1; unsigned int IsSendBrightnessIncrease :1; unsigned int IsSendBrightnessWrite :1; unsigned int IsSendBrightnessRead :1; unsigned int IsSendSharpnessDecrease :1; unsigned int IsSendSharpnessIncrease :1; unsigned int IsSendSharpnessWrite :1; unsigned int IsSendSharpnessRead :1; unsigned int IsSendWhiteBalance :1; unsigned int IsSendVideo :1; unsigned int IsSendPhoto :1; unsigned int IsSendZoomXx :1; unsigned int IsSendMenu0 :1; unsigned int IsSendMenu1 :1; unsigned int IsSendMenu2 :1; unsigned int IsSendMenu3 :1; unsigned int IsSendMenu4 :1; unsigned int IsSendMenu5 :1; unsigned int IsSendMenu6 :1; unsigned int IsSendMenu7 :1; unsigned int IsSendMenu8 :1; unsigned int IsSendMenu9 :1; unsigned int IsSendContrastSet :1; unsigned int IsSendSaturationSet :1; unsigned int IsSendDNRSet :1; }Bits; }_un_sendtoccu_bits;typedef struct { uint8_t abRxBuff[MAX_CCU_BUFF_SIZE]; uint8_t abTxBuff[MAX_CCU_BUFF_SIZE]; uint8_t abTailBuff[4]; uint8_t State; uint16_t wTotalSize; // single frame length uint16_t wSubSize; // cmd + parameter length uint16_t wTailSize; // tail length uint8_t u8Brightness; uint8_t u8Sharpness; uint8_t u8ZoomXx; uint8_t u8Contrast; uint8_t u8Saturation; uint8_t u8DNR; _un_sendtoccu_bits unSend; _un_recvfromccu_bits unRecv; }_stc_ccu_info;_stc_ccu_info g_stcCCU; g_stcCCU.unSend.Bits.IsSendBrightnessWrite = 1; 在部分.c文件里IsSendBrightnessWrite 的赋值失败,在某些文件又能赋值成功,程序没有报错,原因是什么,

#include "global_define.h" uint8_t R_DiscOutVol_Cnt,R_Request_Num_BK,R_PPS_Request_Volt_BK; uint32_t R_PPS_Request_Cur_BK; uint8_t R_HVScan_RequestVol=0,R_HVScan_RequestVol_BK=0,Cnt_Delay_OutVol_Control=0; uint16_t R_VbatVol_Value,R_IbusCur_Value,R_IbatCur_Value; uint8_t R_Error_Time,R_WWDT_Time; TypeOfTimeFlag TimeFlag = {0}; TypeOfStateFlag StateFlag = {0}; //TypeOf_TypeC AP_TypeCA = {0}; TypeOf_TypeC AP_TypeCB = {0}; //TypeOf_PD AP_PDA = {0}; TypeOf_PD AP_PDB = {0}; const unsigned int CONFIG0 __at(0x00300000) = 0x0ED8F127; const uint32_t CONFIG1 __at(0x00300004) = 0x00C0FF3F; //ÓÐIAP¹¦ÄÜ,²»¿ª¿´ÃŹ·// //const unsigned int CONFIG1 __at(0x00300004) = 0x0040ffbf; const unsigned int CONFIG2 __at(0x00300008) = 0x1fffe000; const unsigned int CONFIG3 __at(0x0030000c) = 0x0000ffff; void SlotBranch100ms(void); void SlotBranch1s(void); volatile IsrFlag_Char R_Time_Flag; typedef struct{ uint8_t B_bit0: 1; }TestBits; TestBits Bits; #define check_8812 1 #define check_discharger 0 #define check_MOS 0 extern unsigned char display_gate; //¸Ãº¯ÊýÖ÷ÒªÓÃÀ´¼ì²émosµÄÓ¦Óᣠvoid check_nmos(void) { static unsigned int m,n=0; if(m<500) { m++; GPIO_WriteBit(GPIOB, GPIO_PinSource2, Bit_RESET); } else if(m<1000) { m++; GPIO_WriteBit(GPIOB, GPIO_PinSource2, Bit_SET); } else { m=0; } } unsigned char key_val=0; unsigned char device_state=0; unsigned int device_state_counter=0; #define device_state_counter_data 250 #define device_state_counter_data2 5 #define A_1 10 #define A_8 128 void led_inial(void) { DispBuf.Bits.FastCharge = RESET; DispInit(); } //Main function int main(void) { static unsigned int counter1,counter2=0,bufer; F_MCU_Initialization(); //MCU³õʼ»¯ HV_Init(); //*********************************************************************************** AP_TypeCB.TypeCx = TypeCB; AP_TypeCB.B_Support_HW = SET; AP_TypeCB.TypeC_Rp_Mode = TypeC_Cur

/********************** SN8P2501B 4M __interrupt IntIn() StartOneTImeSample(void) **********************/ typedef struct { unsigned char u8WihtchIOCharge; unsigned long u16ChargeTimeIo; // unsigned long u16ChargeTimeHumi; // }ChargeTyPe; #define CHARGE_HUMIDITY_IO_HIGH() FP21 = 1 #define CHARGE_HUNIDITY_IO_LOW() FP21 = 0 #define CHARGE_IO_HIGH() FP20 = 1 #define CHARGE_IO_LOW() FP20 = 0 #define CHARGE_IO_HI() P2M = 0X00 #define F_data 20 __interrupt IntIn() { WDTR = 0X5A; // T0C = F_data; m_st_ChargeType.u8WihtchIOCharge++; if(m_st_ChargeType.u8WihtchIOCharge&0x80) // { if(m_st_ChargeType.u8WihtchIOCharge >= 0x84) // 3:1 { CHARGE_HUNIDITY_IO_LOW(); m_st_ChargeType.u8WihtchIOCharge = 0x80; } else if(m_st_ChargeType.u8WihtchIOCharge >= 0x81) { CHARGE_HUMIDITY_IO_HIGH(); } } else { if(m_st_ChargeType.u8WihtchIOCharge == 0x01)// { CHARGE_IO_HIGH(); } else if(m_st_ChargeType.u8WihtchIOCharge == 0x04)// 3:1 { CHARGE_IO_LOW(); m_st_ChargeType.u8WihtchIOCharge = 0x00; } } m_st_ChargeType.u16ChargeTimeIo++; FT0IRQ = 0; //clear t0 irq flag } void StartOneTImeSample(void) { CHARGE_IO_HI(); //P1 m_st_ChargeType.u16ChargeTimeIo = 0; // if(m_st_ChargeType.u8WihtchIOCharge&0x80) { FP21M = 1; // CHARGE_HUNIDITY_IO_LOW(); } else { FP20M = 1; // CHARGE_IO_LOW(); } delay1N(2); // T0C = F_data; // FT0ENB = 1;// // while(1) { if(FP22) // { FT0ENB = 0;// , if(m_st_ChargeType.u8WihtchIOCharge&0x80)// { m_st_ChargeType.u16ChargeTimeHumi = m_st_ChargeType.u16ChargeTimeIo; } break; } } P2M = 0X23; P2 = 0X00;// FP22M = 1; FP22 = 0; delay1N(100); FP22M = 0; }

最新推荐

recommend-type

utlog.sqlite

utlog.sqlite
recommend-type

钢结构原理课程设计:露顶式平面钢闸门设计任务及指南

内容概要:本文档为《钢结构原理》课程设计任务及指导书,主要面向水利水电工程专业的学生。详细介绍了课程设计的目的,旨在帮助学生掌握钢结构基本理论以及相关规范的使用方法,培养独立分析和解决实际工程问题的能力。提供了设计所需的背景资料,如提升式平面钢闸门的相关参数及其启动装置、选用材料等。具体的设计内容包括但不限于了解任务要求,确定结构形式,设计面板及各类梁的设计计算。同时提出了明确的设计要求和成果形式。 适合人群:水利水电工程专业的本科生或研究生,尤其是已学习过《钢结构原理》课程的学生。 使用场景及目标:通过本任务的学习和实践,学生能加深对钢结构设计理念的理解,在实际操作过程中学会应用国家最新规范进行结构设计计算,提升个人的专业能力和项目经验。 阅读建议:结合课本内容及相关行业规范认真阅读和准备设计方案,注意手绘图纸的质量和技术报告的撰写要求。
recommend-type

springboot-vue-数计学院学生综合素质评价系统的设计与实现-源码工程-29页从零开始全套图文详解-28页设计论文-21页答辩ppt-全套开发环境工具、文档模板、电子教程、视频教学资源分享

资源说明: 1:29页图文详解文档(从零开始项目全套环境工具安装搭建调试运行部署,保姆级图文详解)。 2:28页毕业设计论文,万字长文,word文档,支持二次编辑。 3:21页答辩ppt,pptx格式,支持二次编辑。 4:工具环境、ppt参考模板、相关教程资源分享。 5:资源项目源码均已通过严格测试验证,保证能够正常运行,本项目仅用作交流学习参考,请切勿用于商业用途。 6:项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通。 内容概要: 本系统基于 B/S 网络结构,在 IDEA 中开发。服务端用 Java 并借 Spring Boot 框架搭建后台。前台采用支持 HTML5 的 VUE 框架。用 MySQL 存储数据,可靠性强。 能学到什么: 理解 B/S 结构在分布式系统优势,熟练运用 IDEA 及相关工具流程开发 Java 项目。后端可掌握 Java 编程技巧,学会用 Spring Boot 搭建后台,体会便利以提升效率、专注业务。前端能掌握 VUE 框架构建交互界面,还会使用 MySQL 存储管理数据。此外,能了解前后端数据交互,掌握打包部署流程。
recommend-type

易语言例程:用易核心支持库打造功能丰富的IE浏览框

资源摘要信息:"易语言-易核心支持库实现功能完善的IE浏览框" 易语言是一种简单易学的编程语言,主要面向中文用户。它提供了大量的库和组件,使得开发者能够快速开发各种应用程序。在易语言中,通过调用易核心支持库,可以实现功能完善的IE浏览框。IE浏览框,顾名思义,就是能够在一个应用程序窗口内嵌入一个Internet Explorer浏览器控件,从而实现网页浏览的功能。 易核心支持库是易语言中的一个重要组件,它提供了对IE浏览器核心的调用接口,使得开发者能够在易语言环境下使用IE浏览器的功能。通过这种方式,开发者可以创建一个具有完整功能的IE浏览器实例,它不仅能够显示网页,还能够支持各种浏览器操作,如前进、后退、刷新、停止等,并且还能够响应各种事件,如页面加载完成、链接点击等。 在易语言中实现IE浏览框,通常需要以下几个步骤: 1. 引入易核心支持库:首先需要在易语言的开发环境中引入易核心支持库,这样才能在程序中使用库提供的功能。 2. 创建浏览器控件:使用易核心支持库提供的API,创建一个浏览器控件实例。在这个过程中,可以设置控件的初始大小、位置等属性。 3. 加载网页:将浏览器控件与一个网页地址关联起来,即可在控件中加载显示网页内容。 4. 控制浏览器行为:通过易核心支持库提供的接口,可以控制浏览器的行为,如前进、后退、刷新页面等。同时,也可以响应浏览器事件,实现自定义的交互逻辑。 5. 调试和优化:在开发完成后,需要对IE浏览框进行调试,确保其在不同的操作和网页内容下均能够正常工作。对于性能和兼容性的问题需要进行相应的优化处理。 易语言的易核心支持库使得在易语言环境下实现IE浏览框变得非常方便,它极大地降低了开发难度,并且提高了开发效率。由于易语言的易用性,即使是初学者也能够在短时间内学会如何创建和操作IE浏览框,实现网页浏览的功能。 需要注意的是,由于IE浏览器已经逐渐被微软边缘浏览器(Microsoft Edge)所替代,使用IE核心的技术未来可能面临兼容性和安全性的挑战。因此,在实际开发中,开发者应考虑到这一点,并根据需求选择合适的浏览器控件实现技术。 此外,易语言虽然简化了编程过程,但其在功能上可能不如主流的编程语言(如C++, Java等)强大,且社区和技术支持相比其他语言可能较为有限,这些都是在选择易语言作为开发工具时需要考虑的因素。 文件名列表中的“IE类”可能是指包含实现IE浏览框功能的类库或者示例代码。在易语言中,类库是一组封装好的代码模块,其中包含了各种功能的实现。通过在易语言项目中引用这些类库,开发者可以简化开发过程,快速实现特定功能。而示例代码则为开发者提供了具体的实现参考,帮助理解和学习如何使用易核心支持库来创建IE浏览框。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

STM32F407ZG引脚功能深度剖析:掌握引脚分布与配置的秘密(全面解读)

![STM32F407ZG引脚功能深度剖析:掌握引脚分布与配置的秘密(全面解读)](https://tapit.vn/wp-content/uploads/2019/01/cubemx-peripheral-1024x545.png) # 摘要 本文全面介绍了STM32F407ZG微控制器的引脚特性、功能、配置和应用。首先概述了该芯片的引脚布局,然后详细探讨了标准外设、高级控制以及特殊功能引脚的不同配置和使用方法。在此基础上,文章深入分析了引脚模式配置、高级配置技巧,并提供了实际应用案例,如LED控制和串口通信。在设计方面,阐述了引脚布局策略、多层板设计及高密度引脚应用的解决方案。最后,介绍
recommend-type

给出文档中问题的答案代码

您提到的是需要编写MATLAB代码来实现文档中的实验任务。以下是根据文档内容编写的MATLAB代码示例: ```matlab % 上机2 实验代码 % 读取输入图像 inputImage = imread('your_face_image.jpg'); % 替换为您的图像文件路径 if size(inputImage, 1) < 1024 || size(inputImage, 2) < 1024 error('图像尺寸必须大于1024x1024'); end % 将彩色图像转换为灰度图像 grayImage = rgb2gray(inputImage); % 调整图像大小为5
recommend-type

Docker构建与运行Next.js应用的指南

资源摘要信息:"rivoltafilippo-next-main" 在探讨“rivoltafilippo-next-main”这一资源时,首先要从标题“rivoltafilippo-next”入手。这个标题可能是某一项目、代码库或应用的命名,结合描述中提到的Docker构建和运行命令,我们可以推断这是一个基于Docker的Node.js应用,特别是使用了Next.js框架的项目。Next.js是一个流行的React框架,用于服务器端渲染和静态网站生成。 描述部分提供了构建和运行基于Docker的Next.js应用的具体命令: 1. `docker build`命令用于创建一个新的Docker镜像。在构建镜像的过程中,开发者可以定义Dockerfile文件,该文件是一个文本文件,包含了创建Docker镜像所需的指令集。通过使用`-t`参数,用户可以为生成的镜像指定一个标签,这里的标签是`my-next-js-app`,意味着构建的镜像将被标记为`my-next-js-app`,方便后续的识别和引用。 2. `docker run`命令则用于运行一个Docker容器,即基于镜像启动一个实例。在这个命令中,`-p 3000:3000`参数指示Docker将容器内的3000端口映射到宿主机的3000端口,这样做通常是为了让宿主机能够访问容器内运行的应用。`my-next-js-app`是容器运行时使用的镜像名称,这个名称应该与构建时指定的标签一致。 最后,我们注意到资源包含了“TypeScript”这一标签,这表明项目可能使用了TypeScript语言。TypeScript是JavaScript的一个超集,它添加了静态类型定义的特性,能够帮助开发者更容易地维护和扩展代码,尤其是在大型项目中。 结合资源名称“rivoltafilippo-next-main”,我们可以推测这是项目的主目录或主仓库。通常情况下,开发者会将项目的源代码、配置文件、构建脚本等放在一个主要的目录中,这个目录通常命名为“main”或“src”等,以便于管理和维护。 综上所述,我们可以总结出以下几个重要的知识点: - Docker容器和镜像的概念以及它们之间的关系:Docker镜像是静态的只读模板,而Docker容器是从镜像实例化的动态运行环境。 - `docker build`命令的使用方法和作用:这个命令用于创建新的Docker镜像,通常需要一个Dockerfile来指定构建的指令和环境。 - `docker run`命令的使用方法和作用:该命令用于根据镜像启动一个或多个容器实例,并可指定端口映射等运行参数。 - Next.js框架的特点:Next.js是一个支持服务器端渲染和静态网站生成的React框架,适合构建现代的Web应用。 - TypeScript的作用和优势:TypeScript是JavaScript的一个超集,它提供了静态类型检查等特性,有助于提高代码质量和可维护性。 - 项目资源命名习惯:通常项目会有一个主目录,用来存放项目的源代码和核心配置文件,以便于项目的版本控制和团队协作。 以上内容基于给定的信息进行了深入的分析,为理解该项目的构建、运行方式以及技术栈提供了基础。在实际开发中,开发者应当参考更详细的文档和指南,以更高效地管理和部署基于Docker和TypeScript的Next.js项目。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【热传递模型的终极指南】:掌握分类、仿真设计、优化与故障诊断的18大秘诀

![热传递模型](https://study.com/cimages/videopreview/radiation-heat-transfer-the-stefan-boltzmann-law_135679.png) # 摘要 热传递模型在工程和物理学中占有重要地位,对于提高热交换效率和散热设计至关重要。本文系统性地介绍了热传递模型的基础知识、分类以及在实际中的应用案例。文章详细阐述了导热、对流换热以及辐射传热的基本原理,并对不同类型的热传递模型进行了分类,包括稳态与非稳态模型、一维到三维模型和线性与非线性模型。通过仿真设计章节,文章展示了如何选择合适的仿真软件、构建几何模型、设置材料属性和