grouped = df2.groupby(df2.columns[1])[df2.columns[2, 5]].sum().reset_index()改成按照第2列进行分组,分别统计第3列和第6列数据
时间: 2024-01-02 08:02:39 浏览: 85
好的,按照您的需求,正确的代码应该是:
```python
grouped = df2.groupby(df2.columns[1]).agg({df2.columns[2]: 'sum', df2.columns[5]: 'sum'}).reset_index()
```
这样就可以按照第2列进行分组,并同时统计第3列和第6列的和了。`agg()` 函数可以对每一列进行不同的统计操作,这里使用了字典形式的参数传递,分别指定了第3列和第6列使用 `sum()` 函数进行求和操作。最后使用 `reset_index()` 函数将结果转换为 DataFrame 格式。
相关问题
改成检索多条统计数据:grouped = df2.groupby(df2.columns[1])[df2.columns[5]].sum().reset_index()
clock_arch;
```
这个设计可以在FPGA或ASIC上实现,并且可以通过手动调节时间加一信好的,你的问题是如何使用 pandas 对多条数据进行分组并统计它们的和,然后将号UP来设置当前时间。如果需要显示到数码管上,还需要添加数码管驱动电路。
python grouped = df2.groupby(df2.columns[1])[df2.columns[5]].sum().reset_index() 增加除以一个数的数据
你可以在代码中添加一个除法操作,将 `df2.groupby(df2.columns[1])[df2.columns[5]].sum()` 的结果除以你想要的数,例如:
```
divisor = 2
grouped = df2.groupby(df2.columns[1])[df2.columns[5]].sum().reset_index()
grouped[df2.columns[5]] = grouped[df2.columns[5]] / divisor
```
这个代码片段将会对 `df2` 按照第二列进行分组,并计算第六列的和,然后将和除以2,最后生成一个包含分组结果和除法计算结果的新 dataframe `grouped`。你可以根据自己的需求修改代码中的分组列、求和列和除数。
阅读全文