解释代码vec = torch.zeros(6, tensor.shape[1])
时间: 2023-05-25 12:04:31 浏览: 86
这行代码使用了PyTorch库创建一个大小为6xN的零张量(tensor)。其中,N是一个变量,它表示tensor的第二个维度的大小。在这里,第一个维度为6,代表张量的行数,而第二个维度为tensor的列数。
因此,这行代码创建了一个大小为6xN的零矩阵。这个矩阵可以用来存储将tensor转化为向量时的结果,其中每一行代表一个向量。
相关问题
我想把gensim库中的word2vec用在pytorch模型中,可以吗
是可以的。你可以使用gensim库来训练word2vec模型,然后将其保存为二进制文件,并在PyTorch中加载它们。这样,你就可以将预训练的词向量作为输入嵌入到你的PyTorch模型中,以提高模型的性能。
具体来说,你可以使用gensim库训练word2vec模型,例如:
```python
from gensim.models import Word2Vec
sentences = [['this', 'is', 'the', 'first', 'sentence'],
['this', 'is', 'the', 'second', 'sentence'],
['yet', 'another', 'sentence'],
['one', 'more', 'sentence']]
model = Word2Vec(sentences, size=100, window=5, min_count=1, workers=4)
model.save('word2vec.model')
```
然后,你可以在PyTorch中加载它。例如:
```python
import torch
import numpy as np
from gensim.models import KeyedVectors
word_vectors = KeyedVectors.load_word2vec_format('word2vec.model', binary=True)
# 获取词向量
word_vectors['first'] # 返回一个numpy数组
# 将词向量转换为PyTorch张量
embedding_matrix = np.zeros((len(word_vectors.vocab), 100))
for i in range(len(word_vectors.vocab)):
embedding_vector = word_vectors[word_vectors.index2word[i]]
if embedding_vector is not None:
embedding_matrix[i] = embedding_vector
embedding_tensor = torch.tensor(embedding_matrix)
```
现在,你可以将`embedding_tensor`用作你的PyTorch模型的嵌入层。
请你仿造slot_attention代码,构造两层GAT对形状为(1358,7,12,307,2)的交通数据集计算隐变量。其中第2列是度特征,对度特征相同节点计算注意力系数,可能用到for循环。最好能告诉我每一行代码在做什么。在forward阶段希望不要出现nn.Sequential不能处理多输入特征的情况并避免避免内存过大、邻接矩阵分配过大、killed等情况,是pytorch版本。
好的,这是一个相对复杂的问题,需要一步一步地来。
首先,我们要导入必要的库,包括PyTorch、numpy和scipy.sparse。同时,我们还需要定义一些超参数,包括节点特征的维度、注意力机制中的维度、头数和dropout率等。代码如下:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from scipy.sparse import coo_matrix
class GAT(nn.Module):
def __init__(self, in_dim, out_dim, num_heads, attn_dim, dropout):
super(GAT, self).__init__()
self.in_dim = in_dim
self.out_dim = out_dim
self.num_heads = num_heads
self.attn_dim = attn_dim
self.dropout = dropout
self.W = nn.Parameter(torch.Tensor(num_heads, in_dim, attn_dim))
self.a = nn.Parameter(torch.Tensor(num_heads, 2 * attn_dim, 1))
nn.init.xavier_uniform_(self.W)
nn.init.xavier_uniform_(self.a)
def forward(self, x, adj):
x = F.dropout(x, self.dropout, training=self.training)
h = torch.matmul(x, self.W)
N = h.size()[0]
a_input = torch.cat([h.repeat(1, 1, N).view(N * N, -1), h.repeat(1, N, 1)], dim=2).view(N, -1, 2 * self.attn_dim)
e = F.leaky_relu(torch.matmul(a_input, self.a.repeat(N, 1, 1).view(N * N, -1, 1)).squeeze(2))
zero_vec = -9e15 * torch.ones_like(e)
attention = torch.where(adj > 0, e, zero_vec)
attention = F.softmax(attention, dim=1)
attention = F.dropout(attention, self.dropout, training=self.training)
h_prime = torch.matmul(attention, h)
return h_prime
```
接下来,我们需要构造一个图。由于我们的数据集比较大,我们采用稀疏矩阵的方式来存储图。我们先将邻接矩阵转换为COO格式,然后将其转换为稀疏矩阵。代码如下:
```python
# 构造图
adj = np.zeros((1358, 1358))
# 假设数据集中第2列是度特征
degrees = data[:, :, :, :, 1].reshape((-1, 307))
for i in range(degrees.shape[0]):
for j in range(degrees.shape[1]):
adj[i, i+j*1358] = degrees[i, j]
# 将邻接矩阵转换为COO格式
adj_coo = coo_matrix(adj)
# 将COO格式转换为稀疏矩阵
adj = torch.sparse_coo_tensor((adj_coo.row, adj_coo.col), adj_coo.data, adj_coo.shape)
```
接下来,我们可以构造两层GAT模型。由于每个GAT模型都需要一个注意力机制,我们需要先构造一个注意力机制的类。代码如下:
```python
class Attention(nn.Module):
def __init__(self, in_dim, out_dim, num_heads, attn_dim, dropout):
super(Attention, self).__init__()
self.in_dim = in_dim
self.out_dim = out_dim
self.num_heads = num_heads
self.attn_dim = attn_dim
self.dropout = dropout
self.W = nn.Parameter(torch.Tensor(num_heads, in_dim, attn_dim))
self.a = nn.Parameter(torch.Tensor(num_heads, 2 * attn_dim, 1))
nn.init.xavier_uniform_(self.W)
nn.init.xavier_uniform_(self.a)
def forward(self, x):
x = F.dropout(x, self.dropout, training=self.training)
h = torch.matmul(x, self.W)
N = h.size()[0]
a_input = torch.cat([h.repeat(1, 1, N).view(N * N, -1), h.repeat(1, N, 1)], dim=2).view(N, -1, 2 * self.attn_dim)
e = F.leaky_relu(torch.matmul(a_input, self.a.repeat(N, 1, 1).view(N * N, -1, 1)).squeeze(2))
zero_vec = -9e15 * torch.ones_like(e)
attention = torch.where(adj > 0, e, zero_vec)
attention = F.softmax(attention, dim=1)
attention = F.dropout(attention, self.dropout, training=self.training)
h_prime = torch.matmul(attention, h)
return h_prime
```
然后,我们就可以构造两层GAT模型了。代码如下:
```python
class GAT(nn.Module):
def __init__(self, in_dim, out_dim, num_heads, attn_dim, dropout):
super(GAT, self).__init__()
self.attentions = nn.ModuleList([Attention(in_dim, out_dim, num_heads, attn_dim, dropout) for _ in range(2)])
self.out_layer = nn.Linear(out_dim * num_heads, out_dim)
def forward(self, x, adj):
x = torch.cat([att(x) for att in self.attentions], dim=2)
x = self.out_layer(x)
return x
gat = GAT(in_dim=307, out_dim=64, num_heads=4, attn_dim=64, dropout=0.1)
gat.to(device)
x = torch.randn(1358, 7, 12, 307, 2).to(device)
h = gat(x, adj)
```
阅读全文