如何将两个已排序的递增链表(每个链表节点包含整数)高效地合并成一个新的递增链表,同时保持原链表的存储结构不变,不额外分配存储空间?

时间: 2024-06-20 08:02:13 浏览: 77
合并两个已排序的递增链表,且不使用额外的存储空间,可以通过双指针法和链表节点的链接操作来完成。以下是步骤: 1. 初始化两个指针,分别指向第一个链表的头节点和第二个链表的头节点,设为`p1`和`p2`。 2. 创建一个新的空链表头节点`result`,用于存放合并后的链表。 3. 比较`p1`和`p2`的值,选择较小的那个节点作为结果链表的新节点,并将它链接到`result`。然后移动指向较小值的节点的指针(例如,如果`p1`的值小,就将`p1`移到下一个节点;如果`p2`的值小,就将`p2`移到下一个节点)。 4. 重复步骤3,直到其中一个链表遍历完。遍历完的链表剩余部分就是递增的,直接链接到另一个链表剩下的最后一个节点之后。 5. 最后,如果第二个链表还有剩余节点,将其链接到结果链表的尾部,因为它是递增的,所以不需要再次比较。
相关问题

请编写函数在递增的整数序列链表中插入一个新整数

### 回答1: 以下是一个示例函数,用于在递增的整数序列链表中插入一个新整数: ```python def insert_increasing_list(head, new_val): """ 在递增的整数序列链表中插入一个新整数 :param head: 链表头节点 :param new_val: 新整数 :return: 插入新整数后的链表头节点 """ # 如果链表为空,直接将新整数作为头节点返回 if not head: return ListNode(new_val) # 如果新整数比头节点小,将新整数作为头节点返回 if new_val < head.val: new_head = ListNode(new_val) new_head.next = head return new_head # 遍历链表,找到新整数应该插入的位置 cur = head while cur.next and cur.next.val < new_val: cur = cur.next # 将新整数插入到链表中 new_node = ListNode(new_val) new_node.next = cur.next cur.next = new_node return head ``` 该函数接受两个参数:链表头节点和新整数。如果链表为空,直接将新整数作为头节点返回;如果新整数比头节点小,将新整数作为头节点返回;否则,遍历链表,找到新整数应该插入的位置,然后将新整数插入到链表中。最后返回链表头节点。 ### 回答2: 这道题需要我们编写一个函数,在给定的递增的整数序列链表中插入一个新的整数。 在解答这道问题时,我们需要明确一些前提条件: 1. 链表中的数据是递增的; 2. 新插入的整数也是递增的。 给定这些前提条件,我们可以根据链表的特性来编写插入函数,具体细节如下。 首先,我们需要定义链表节点的结构体,由于节点存储整数,结构体需要包含一个整数成员变量和一个指向后继节点的指针: ``` struct ListNode { int val; ListNode *next; ListNode(int x) : val(x), next(NULL) {} }; ``` 接着,我们定义插入函数: ``` ListNode* insert(ListNode* head, int x) { if (head == NULL || x < head->val) { ListNode* newNode = new ListNode(x); newNode->next = head; return newNode; } ListNode* curr = head; while (curr->next != NULL && curr->next->val < x) { curr = curr->next; } ListNode* newNode = new ListNode(x); newNode->next = curr->next; curr->next = newNode; return head; } ``` 这个函数的实现使用了类似于插入排序的思想,从链表头开始逐个遍历节点,如果遍历到的当前节点的值比插入值小,则继续遍历下一个节点,直到找到一个节点的值大于等于插入值或遍历到链表末尾。然后新建一个节点,把它插入到当前节点的后面,更新链表指针,然后返回链表头指针。 在插入操作完成后,整个链表仍然保持递增有序的特性,所以我们可以用类似于插入排序的思想来解题,在遍历链表的过程中,逐步在适当的位置插入新节点。这样时间复杂度为 $O(n)$,因为遍历整个链表需要 $n$ 次,其中 $n$ 是链表的长度,实现起来也非常简单。 以上就是在递增的整数序列链表中插入一个新整数的函数的一种实现方式。 ### 回答3: 要在递增的整数序列链表中插入一个新整数,我们需要编写一个能够完成以下功能的函数: 1. 遍历整个链表,找到新整数需要插入的位置。 2. 将新整数插入到链表中相应的位置处。 下面是一个简单的 Python 代码示例,可以实现上述功能: ```python class ListNode: def __init__(self, val=0, next=None): self.val = val self.next = next def insert_num(head, new_num): if not head: # 如果链表为空,直接创建一个新节点作为头节点。 head = ListNode(new_num) elif new_num < head.val: # 如果新数比头节点的值还小,将新数插入到头节点的前面,成为新的头节点。 new_node = ListNode(new_num, head) head = new_node else: # 遍历链表,找到新数的插入位置。 curr_node = head while curr_node.next and new_num > curr_node.next.val: curr_node = curr_node.next # 将新数插入到链表中相应的位置处。 new_node = ListNode(new_num, curr_node.next) curr_node.next = new_node return head ``` 在上述代码中,我们先定义了一个 ListNode 类来表示链表中的节点,其中每个节点包含一个值和一个指向下一个节点的指针。然后,我们定义了一个名为 insert_num 的函数,该函数接受两个参数:链表的头节点 head 和要插入的新整数 new_num。函数会根据新数的大小,将其插入到链表中合适的位置处。 首先,我们判断链表是否为空。如果是,直接将新数创建为新的头节点。如果新数比头节点的值还小,将新数插入到头节点的前面,成为新的头节点。 如果链表不为空且新数比头节点的值大,我们开始遍历整个链表,找到新数的插入位置。遍历过程中,我们使用一个指针 curr_node 来标记当前节点,如果新数比当前节点的值大,就一直向后遍历。当遍历到链表的末尾或者找到插入位置时,就退出循环。 最后,我们将新数插入到链表中相应的位置处。具体来说,我们创建一个新节点 new_node,其值为 new_num,next 指针指向 curr_node 的下一个节点。然后,将 curr_node 的 next 指针指向新节点,实现新数的插入操作。 最后,我们返回更新后的链表头节点 head。

用c编写函数,将一个递增链表变为递减顺序链表

在C语言中,要将一个递增链表变为递减顺序链表,你需要遍历链表,同时修改每个节点的值。这里是一个基本的步骤: 1. 定义链表结构(假设节点包含整数值和指向下一个节点的指针): ```c typedef struct Node { int data; struct Node* next; } Node; ``` 2. 创建一个函数,接受链表头节点作为参数: ```c Node* reverseList(Node* head) { if (head == NULL || head->next == NULL) { return head; // 基线情况:空链表或只有一个元素的链表 } Node* prev = NULL; // 指向前一个节点 Node* current = head; // 当前处理的节点 // 遍历链表,每次迭代将当前节点的值赋给前一个节点,并更新指针 while (current != NULL) { Node* nextTemp = current->next; // 保存下一个节点 current->next = prev; // 将当前节点指向前一个节点 prev = current; // 更新前一个节点为当前节点 current = nextTemp; // 移动到下一个节点 } return prev; // 返回新的头节点,因为链表已经被反向了 } ``` 这个函数使用了迭代的方法,不需要额外的空间,只修改了链表节点之间的链接。

相关推荐

最新推荐

recommend-type

面向多场景应用的光网络通感一体化架构和关键技术方案研究.pdf

面向多场景应用的光网络通感一体化架构和关键技术方案研究
recommend-type

基于Vue框架的Digital Twin开发设计源码

该项目是基于Vue框架的Digital Twin开发设计源码,由38个文件组成,涉及TypeScript、JavaScript、Vue、CSS、HTML等多种编程语言,包括9个TypeScript文件、6个JavaScript文件、5个JSON文件、5个Vue文件、3个SVG文件、2个Markdown文件、2个WebAssembly文件、1个Git忽略文件、1个HTML文件和1个CSS文件。该源码旨在提供大学生在线学术交流的平台,助力学术创新与协作。
recommend-type

基于Java和C++技术的易涂鸦设计源码

该项目是一款基于Java和C++技术的易涂鸦设计平台源码,包含487个文件,其中Java源文件226个,PNG图片文件135个,XML配置文件88个,其他类型文件包括brush文件7个,gradle文件4个,jpg文件4个,gitignore文件3个,properties文件3个,md文件2个,txt文件2个。该平台专注于涂鸦功能,为用户提供便捷的设计与绘图体验。
recommend-type

基于HTML/CSS/JavaScript的多人在线知识交流平台博客项目设计源码

该项目是一款基于HTML、CSS和JavaScript的多人在线知识交流平台博客,设计源码包含451个文件,其中包括149个Java文件、89个JavaScript文件、60个CSS文件、42个Class文件、23个PNG图片文件、20个XML文件、17个HTML文件、12个JPG文件、6个JSON文件、5个Map文件,旨在为用户提供一个互动的知识分享与交流空间。
recommend-type

IPQ4019 QSDK开源代码资源包发布

资源摘要信息:"IPQ4019是高通公司针对网络设备推出的一款高性能处理器,它是为需要处理大量网络流量的网络设备设计的,例如无线路由器和网络存储设备。IPQ4019搭载了强大的四核ARM架构处理器,并且集成了一系列网络加速器和硬件加密引擎,确保网络通信的速度和安全性。由于其高性能的硬件配置,IPQ4019经常用于制造高性能的无线路由器和企业级网络设备。 QSDK(Qualcomm Software Development Kit)是高通公司为了支持其IPQ系列芯片(包括IPQ4019)而提供的软件开发套件。QSDK为开发者提供了丰富的软件资源和开发文档,这使得开发者可以更容易地开发出性能优化、功能丰富的网络设备固件和应用软件。QSDK中包含了内核、驱动、协议栈以及用户空间的库文件和示例程序等,开发者可以基于这些资源进行二次开发,以满足不同客户的需求。 开源代码(Open Source Code)是指源代码可以被任何人查看、修改和分发的软件。开源代码通常发布在公共的代码托管平台,如GitHub、GitLab或SourceForge上,它们鼓励社区协作和知识共享。开源软件能够通过集体智慧的力量持续改进,并且为开发者提供了一个测试、验证和改进软件的机会。开源项目也有助于降低成本,因为企业或个人可以直接使用社区中的资源,而不必从头开始构建软件。 U-Boot是一种流行的开源启动加载程序,广泛用于嵌入式设备的引导过程。它支持多种处理器架构,包括ARM、MIPS、x86等,能够初始化硬件设备,建立内存空间的映射,从而加载操作系统。U-Boot通常作为设备启动的第一段代码运行,它为系统提供了灵活的接口以加载操作系统内核和文件系统。 标题中提到的"uci-2015-08-27.1.tar.gz"是一个开源项目的压缩包文件,其中"uci"很可能是指一个具体项目的名称,比如U-Boot的某个版本或者是与U-Boot配置相关的某个工具(U-Boot Config Interface)。日期"2015-08-27.1"表明这是该项目的2015年8月27日的第一次更新版本。".tar.gz"是Linux系统中常用的归档文件格式,用于将多个文件打包并进行压缩,方便下载和分发。" 描述中复述了标题的内容,强调了文件是关于IPQ4019处理器的QSDK资源,且这是一个开源代码包。此处未提供额外信息。 标签"软件/插件"指出了这个资源的性质,即它是一个软件资源,可能包含程序代码、库文件或者其他可以作为软件一部分的插件。 在文件名称列表中,"uci-2015-08-27.1"与标题保持一致,表明这是一个特定版本的软件或代码包。由于实际的文件列表中只提供了这一项,我们无法得知更多的文件信息,但可以推测这是一个单一文件的压缩包。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【PDF表格创建与编辑】:使用Apache PDFBox和iText库制作表格,表格处理不求人

![java 各种pdf处理常用库介绍与使用](https://img-blog.csdnimg.cn/img_convert/6ae15afdef45b1d8fe6d289f0065d18c.png) # 1. PDF表格创建与编辑概述 在当今数字化时代,PDF格式因其可移植性和可维护性成为了电子文档的首选。在诸多应用场景中,表格作为一种重要的信息传递工具,其创建与编辑的需求日益增长。本章节将为读者提供一个关于PDF表格创建与编辑的概述,为后续章节中使用Apache PDFBox和iText库进行深入探讨奠定基础。 ## 1.1 PDF表格的作用与重要性 PDF表格在商务沟通、数据分析
recommend-type

python输出txt文件

在Python中,你可以使用内置的`open()`函数来创建和写入TXT文件。下面是一个简单的例子: ```python # 打开文件(如果不存在则创建) with open('example.txt', 'w') as file: # 写入文本内容 file.write('这是你要写入的内容') # 如果你想追加内容而不是覆盖原有文件 # 使用 'a' 模式(append) # with open('example.txt', 'a') as file: # file.write('\n这是追加的内容') # 关闭文件时会自动调用 `close()` 方法,但使
recommend-type

高频组电赛必备:掌握数字频率合成模块要点

资源摘要信息:"2022年电赛 高频组必备模块 数字频率合成模块" 数字频率合成(DDS,Direct Digital Synthesis)技术是现代电子工程中的一种关键技术,它允许通过数字方式直接生成频率可调的模拟信号。本模块是高频组电赛参赛者必备的组件之一,对于参赛者而言,理解并掌握其工作原理及应用是至关重要的。 本数字频率合成模块具有以下几个关键性能参数: 1. 供电电压:模块支持±5V和±12V两种供电模式,这为用户提供了灵活的供电选择。 2. 外部晶振:模块自带两路输出频率为125MHz的外部晶振,为频率合成提供了高稳定性的基准时钟。 3. 输出信号:模块能够输出两路频率可调的正弦波信号。其中,至少有一路信号的幅度可以编程控制,这为信号的调整和应用提供了更大的灵活性。 4. 频率分辨率:模块提供的频率分辨率为0.0291Hz,这样的精度意味着可以实现非常精细的频率调节,以满足高频应用中的严格要求。 5. 频率计算公式:模块输出的正弦波信号频率表达式为 fout=(K/2^32)×CLKIN,其中K为设置的频率控制字,CLKIN是外部晶振的频率。这一计算方式表明了频率输出是通过编程控制的频率控制字来设定,从而实现高精度的频率合成。 在高频组电赛中,参赛者不仅需要了解数字频率合成模块的基本特性,还应该能够将这一模块与其他模块如移相网络模块、调幅调频模块、AD9854模块和宽带放大器模块等结合,以构建出性能更优的高频信号处理系统。 例如,移相网络模块可以实现对信号相位的精确控制,调幅调频模块则能够对信号的幅度和频率进行调整。AD9854模块是一种高性能的DDS芯片,可以用于生成复杂的波形。而宽带放大器模块则能够提供足够的增益和带宽,以保证信号在高频传输中的稳定性和强度。 在实际应用中,电赛参赛者需要根据项目的具体要求来选择合适的模块组合,并进行硬件的搭建与软件的编程。对于数字频率合成模块而言,还需要编写相应的控制代码以实现对K值的设定,进而调节输出信号的频率。 交流与讨论在电赛准备过程中是非常重要的。与队友、指导老师以及来自同一领域的其他参赛者进行交流,不仅可以帮助解决技术难题,还可以相互启发,激发出更多创新的想法和解决方案。 总而言之,对于高频组的电赛参赛者来说,数字频率合成模块是核心组件之一。通过深入了解和应用该模块的特性,结合其他模块的协同工作,参赛者将能够构建出性能卓越的高频信号处理设备,从而在比赛中取得优异成绩。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依