void Gpio_IRQHandler(uint8_t u8Param) { *((uint32_t *)((uint32_t)&M0P_GPIO->P3ICLR + u8Param * 0x40)) = 0; SK_LED_SET(0); delay1ms(100); SK_LED_SET(1); delay1ms(100); } int32_t main(void) { SK_SW2_INIT(); SK_LED_INIT(); Gpio_InitIO(TEST_PORT, TEST_PIN, GpioDirOut); Gpio_SetIO(TEST_PORT, TEST_PIN, TRUE); Gpio_InitIOExt(3, 3, GpioDirIn, TRUE, FALSE, FALSE, 0); Gpio_ClearIrq(3, 3); Gpio_EnableIrq(3, 3, GpioIrqRising); EnableNvic(PORT3_IRQn, DDL_IRQ_LEVEL_DEFAULT, TRUE); while (1) { Gpio_SetIO(TEST_PORT, TEST_PIN, TRUE); delay1ms(1000); Gpio_SetIO(TEST_PORT, TEST_PIN, FALSE); delay1ms(1000); } }翻译这些代码意思
时间: 2024-04-06 18:34:55 浏览: 65
这段代码是一个使用GPIO的示例程序。其中,`Gpio_IRQHandler` 是一个GPIO中断服务函数,当GPIO发生中断时执行。`main`函数中初始化了一些GPIO和中断相关的设置,然后进入一个循环中,每隔1秒交替地将一个GPIO引脚设置为高电平和低电平。在GPIO引脚发生中断时,会执行`Gpio_IRQHandler`函数,该函数会将中断标志位清零,并交替地将一个LED引脚设置为高电平和低电平,以示中断已经发生。
相关问题
#include "gpio.h" #define TEST_PORT (0) #define TEST_PIN (3) #define SK_SW2_INIT() Gpio_InitIO(3, 3, GpioDirIn) #define SK_SW2_GET() Gpio_GetIO(3,3) #define SK_LED_INIT() Gpio_InitIO(0, 3, GpioDirOut) #define SK_LED_SET(x) Gpio_SetIO(0,3,(x)) uint8_t num = 1; void Gpio_IRQHandler(uint8_t u8Param) { *((uint32_t *)((uint32_t)&M0P_GPIO->P3ICLR + u8Param * 0x40)) = 0; SK_LED_SET(0); delay1ms(100); SK_LED_SET(1); delay1ms(100); } int32_t main(void) { SK_SW2_INIT(); SK_LED_INIT(); Gpio_InitIO(TEST_PORT, TEST_PIN, GpioDirOut); Gpio_SetIO(TEST_PORT, TEST_PIN, TRUE); Gpio_InitIOExt(3, 3, GpioDirIn, TRUE, FALSE, FALSE, 0); Gpio_ClearIrq(3, 3); Gpio_EnableIrq(3, 3, GpioIrqRising); EnableNvic(PORT3_IRQn, DDL_IRQ_LEVEL_DEFAULT, TRUE); while (1) { Gpio_SetIO(TEST_PORT, TEST_PIN, TRUE); delay1ms(1000); Gpio_SetIO(TEST_PORT, TEST_PIN, FALSE); delay1ms(1000); } }把这个代码改成p33按键可以控制中断的退出和进入
好的,我帮您修改了代码,如下所示:
```
#include "gpio.h"
#define TEST_PORT (0)
#define TEST_PIN (3)
#define SK_SW2_INIT() Gpio_InitIO(3, 3, GpioDirIn)
#define SK_SW2_GET() Gpio_GetIO(3,3)
#define SK_LED_INIT() Gpio_InitIO(0, 3, GpioDirOut)
#define SK_LED_SET(x) Gpio_SetIO(0,3,(x))
uint8_t num = 1;
uint8_t flag = 1;
void Gpio_IRQHandler(uint8_t u8Param) {
*((uint32_t *)((uint32_t)&M0P_GPIO->P3ICLR + u8Param * 0x40)) = 0;
if (flag == 1) { // 检测到按键中断
flag = 0;
Gpio_DisableIrq(3, 3, GpioIrqRising); // 禁用按键中断
} else { // 检测到按键松开
flag = 1;
Gpio_EnableIrq(3, 3, GpioIrqRising); // 重新使能按键中断
}
SK_LED_SET(0);
delay1ms(100);
SK_LED_SET(1);
delay1ms(100);
}
int32_t main(void) {
SK_SW2_INIT();
SK_LED_INIT();
Gpio_InitIO(TEST_PORT, TEST_PIN, GpioDirOut);
Gpio_SetIO(TEST_PORT, TEST_PIN, TRUE);
Gpio_InitIOExt(3, 3, GpioDirIn, TRUE, FALSE, FALSE, 0);
Gpio_ClearIrq(3, 3);
Gpio_EnableIrq(3, 3, GpioIrqRising);
EnableNvic(PORT3_IRQn, DDL_IRQ_LEVEL_DEFAULT, TRUE);
while (1) {
if (flag == 1) { // 检测到按键松开
Gpio_SetIO(TEST_PORT, TEST_PIN, TRUE);
delay1ms(1000);
Gpio_SetIO(TEST_PORT, TEST_PIN, FALSE);
delay1ms(1000);
}
}
}
```
这个修改后的代码中,添加了一个flag变量用来标志按键是否被按下,以及在中断处理函数中检测按键状态并相应地禁用或使能按键中断。在主函数中,只有在flag变量为1(即按键松开)的时候才执行LED闪烁的代码。这样,按下按键时,LED将停止闪烁,直到按键再次松开。
HAL_UARTEx_ReceiveToIdle_DMA示例
以下是HAL_UARTEx_ReceiveToIdle_DMA的示例代码:
```c
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "stm32f4xx_hal.h"
/* Private variables ---------------------------------------------------------*/
UART_HandleTypeDef huart2;
DMA_HandleTypeDef hdma_usart2_rx;
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_DMA_Init(void);
static void MX_USART2_UART_Init(void);
/* Private functions ---------------------------------------------------------*/
/**
* @brief The application entry point.
* @retval int
*/
int main(void)
{
HAL_Init();
/* Configure the system clock */
SystemClock_Config();
/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_DMA_Init();
MX_USART2_UART_Init();
uint8_t buffer[100] = {0};
uint32_t rx_size;
while (1)
{
// Start UART reception in DMA mode until idle
HAL_UARTEx_ReceiveToIdle_DMA(&huart2, buffer, sizeof(buffer));
// Wait until idle
while (HAL_UARTEx_GetRxIdleness(&huart2) != RESET);
// Get received data size
rx_size = sizeof(buffer) - __HAL_DMA_GET_COUNTER(&hdma_usart2_rx);
// Process received data
// ...
// Clear buffer
memset(buffer, 0, sizeof(buffer));
}
}
/**
* @brief System Clock Configuration
* @retval None
*/
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
/** Initializes the RCC Oscillators according to the specified parameters
* in the RCC_OscInitTypeDef structure.
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
RCC_OscInitStruct.HSIState = RCC_HSI_ON;
RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSI;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_0) != HAL_OK)
{
Error_Handler();
}
}
/**
* @brief USART2 Initialization Function
* @param None
* @retval None
*/
static void MX_USART2_UART_Init(void)
{
huart2.Instance = USART2;
huart2.Init.BaudRate = 115200;
huart2.Init.WordLength = UART_WORDLENGTH_8B;
huart2.Init.StopBits = UART_STOPBITS_1;
huart2.Init.Parity = UART_PARITY_NONE;
huart2.Init.Mode = UART_MODE_TX_RX;
huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart2.Init.OverSampling = UART_OVERSAMPLING_16;
huart2.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE;
huart2.Init.ClockPrescaler = UART_PRESCALER_DIV1;
huart2.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT;
if (HAL_UART_Init(&huart2) != HAL_OK)
{
Error_Handler();
}
}
/**
* Enable DMA controller clock
*/
static void MX_DMA_Init(void)
{
/* DMA controller clock enable */
__HAL_RCC_DMA1_CLK_ENABLE();
/* DMA interrupt init */
/* DMA1_Stream5_IRQn interrupt configuration */
HAL_NVIC_SetPriority(DMA1_Stream5_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(DMA1_Stream5_IRQn);
}
/**
* @brief GPIO Initialization Function
* @param None
* @retval None
*/
static void MX_GPIO_Init(void)
{
/* GPIO Ports Clock Enable */
__HAL_RCC_GPIOH_CLK_ENABLE();
__HAL_RCC_GPIOA_CLK_ENABLE();
__HAL_RCC_GPIOD_CLK_ENABLE();
}
/**
* @brief This function is executed in case of error occurrence.
* @retval None
*/
void Error_Handler(void)
{
/* User may add here some code to deal with this error */
while(1)
{
}
}
/**
* @brief This function is executed in case of DMA interrupt occurrence.
* @retval None
*/
void DMA1_Stream5_IRQHandler(void)
{
HAL_DMA_IRQHandler(&hdma_usart2_rx);
}
/**
* @brief This function is executed when DMA reception is completed.
* @param huart: UART handle
* @retval None
*/
void HAL_UARTEx_RxEventCallback(UART_HandleTypeDef *huart)
{
if (huart->Instance == USART2)
{
// DMA reception completed, do something if needed
}
}
```
在此示例代码中,我们使用STM32Cube HAL库实现了UART的DMA接收,使用了HAL_UARTEx_ReceiveToIdle_DMA函数。在主循环中,我们不断调用该函数以启动DMA接收,然后等待DMA接收完成。一旦接收完成,我们就可以对接收到的数据进行处理。注意,在处理完数据后,我们需要清空接收缓冲区,以便下一次接收。
阅读全文