matlab实现可调增益的李雅普诺夫-MRAC的控制算法代码,稳定被控模型Gp(s) = 2.3*(10s+1)/(s^2+10s+1),参考模型为Gm(s)=1.2*(10s+1)/(s^2+10s+1),输入为幅值为3的方波信号
时间: 2023-06-16 17:02:33 浏览: 167
下面是MATLAB实现可调增益的李雅普诺夫-MRAC的控制算法代码:
```matlab
%% 稳定被控模型Gp(s)=2.3*(10s+1)/(s^2+10s+1)
Gp = tf([2.3, 23], [1, 10, 1]);
%% 参考模型Gm(s)=1.2*(10s+1)/(s^2+10s+1)
Gm = tf([1.2, 12], [1, 10, 1]);
%% 设计李雅普诺夫-MRAC控制器
% 控制器结构:
% u(t) = R(t) * x(t)
% dx(t)/dt = A(t) * x(t) + B(t) * r(t)
% 参数更新:
% dR(t)/dt = -gamma(t) * sign(R(t)) * x(t) * e(t)
% dA(t)/dt = -gamma(t) * sign(R(t)) * x(t) * e(t) * r(t)
% dB(t)/dt = -gamma(t) * sign(R(t)) * x(t) * r^2(t)
% 其中,e(t) = ym(t) - y(t),y(t)为被控模型输出,ym(t)为参考模型输出,r(t)为输入信号
% 初始化参数
gamma0 = 0.01; % 初始学习率
R0 = 1; % 初始增益
A0 = eye(2);
B0 = zeros(2, 1);
% 定义控制器
syms t
R = sym('R(t)', 'real');
A = sym('A(t)', [2, 2], 'real');
B = sym('B(t)', [2, 1], 'real');
x = [y; yd];
u = R * x;
xdot = A * x + B * r;
e = ym - y;
dRdt = -gamma * sign(R) * x * e;
dAdt = -gamma * sign(R) * x * e * r;
dBdt = -gamma * sign(R) * x * r^2;
% 数值化控制器
R_func = matlabFunction(R);
A_func = matlabFunction(A);
B_func = matlabFunction(B);
% 设计仿真参数
tspan = [0, 10];
dt = 0.01;
t = tspan(1):dt:tspan(2);
r = 3 * square(t);
y0 = [0; 0];
yd0 = [0; 0];
theta0 = [R0; reshape(A0, [], 1); B0];
% 进行仿真
theta = theta0;
gamma = gamma0;
Y = zeros(length(t), 1);
for i = 1:length(t)
y = y0(1);
yd = y0(2);
ym = lsim(Gm, r(i), t(1:i));
u = R_func(theta(1), y, yd);
xdot = A_func(theta(2:5), y, yd, r(i)) * [y; yd] + B_func(theta(6:7), r(i)) * r(i);
[t, x] = ode45(@(t, x) xdot, [t(i), t(i + 1)], [y0; yd0]);
y0 = x(end, 1:2)';
yd0 = x(end, 3)';
e = ym - y;
dtheta = [dRdt, reshape(dAdt, [], 1)', reshape(dBdt, [], 1)'] * [theta(1); theta(2:5); theta(6:7); e; r(i)];
theta = theta + gamma * dtheta * dt;
gamma = gamma * 0.999; % 学习率递减
Y(i) = y;
end
% 绘制结果
figure;
plot(t, r, 'b', t, Y, 'r');
xlabel('Time (s)');
ylabel('Output');
legend('Reference Model', 'Controlled Model');
```
需要注意的是,这里使用了符号运算和数值化控制器,可以大大提高计算效率。同时,在实际应用中,需要对学习率进行适当调整,以确保算法的稳定性和收敛性。
阅读全文