代码解释 y_rbf = svr_rbf.fit(X[:-40], Y[:-40]).predict(X[:])
时间: 2024-01-12 17:03:13 浏览: 93
这段代码使用了支持向量回归(SVR)的径向基函数(RBF)核函数来拟合数据,并预测所有数据点的输出值。
具体地,代码中:
- `svr_rbf` 是一个使用 RBF 核函数的 SVR 模型;
- `fit(X[:-40], Y[:-40])` 方法用于拟合模型,其中 `X[:-40]` 表示训练集中的输入特征数据,`Y[:-40]` 表示训练集中的输出标签数据,`[:-40]` 表示从头开始到倒数第 41 个数据点,即留出最后 40 个数据点用于测试;
- `predict(X[:])` 方法用于预测模型的输出值,其中 `X[:]` 表示所有数据点的输入特征数据,即包括训练集和测试集中的数据。
因此,该代码的作用是使用 SVR-RBF 模型对所有数据点进行拟合和预测,并返回所有数据点的预测输出值。
相关问题
train_x, train_y = [], [] for i in range(look_back, len(train_data)): x = [] for j in range(len(svr_models)): x.append(svr_models[j].predict(np.reshape(low_freq_imfs.iloc[i-look_back:i, j].values, (1, -1)))[0]) x.append(lstm_model.predict(np.reshape(high_freq_imfs.iloc[i-look_back:i, :].values, (1, look_back, -1)))[0]) train_x.append(x) train_y.append(train_data.iloc[i, 1]) train_x, train_y = np.array(train_x), np.array(train_y) stack_model = SVR(kernel='rbf', C=100, gamma=0.1, epsilon=.1) stack_model.fit(train_x, train_y) 将以上代码按规范排列,突出显示缩进情况
```
train_x, train_y = [], []
for i in range(look_back, len(train_data)):
x = []
for j in range(lenvr_models)):
x.append(svr_models[j].predict(np.reshape(low_freq_imfs.iloc[i-look_back:i, j].values, (1, -1)))[0])
x.append(lstm_model.predict(np.reshape(high_freq_imfs.iloc[i-look_back:i, :].values, (1, look_back, -1)))[0])
train_x.append(x)
train_y.append(train_data.iloc[i, 1])
train_x, train_y = np.array(train_x), np.array(train_y)
stack_model = SVR(kernel='rbf', C=100, gamma=0.1, epsilon=.1)
stack_model.fit(train_x, train_y)
```
import pandas as pd import numpy as np from sklearn.model_selection import StratifiedKFold, KFold from sklearn.svm import SVR train = pd.read_csv('train.csv') test = pd.read_csv('test.csv') # 分离数据集 X_train_c = train.drop(['ID', 'CLASS'], axis=1).values y_train_c = train['CLASS'].values X_test_c = test.drop(['ID'], axis=1).values nfold = 5 kf = KFold(n_splits=nfold, shuffle=True, random_state=2020) prediction1 = np.zeros((len(X_test_c),)) i = 0 for train_index, valid_index in kf.split(X_train_c, y_train_c): print("\nFold {}".format(i + 1)) X_train, label_train = X_train_c[train_index], y_train_c[train_index] X_valid, label_valid = X_train_c[valid_index], y_train_c[valid_index] clf = SVR(kernel='rbf', C=1, gamma='scale') clf.fit(X_train, label_train) x1 = clf.predict(X_valid) y1 = clf.predict(X_test_c) prediction1 += y1 / nfold i += 1 result1 = np.round(prediction1) id_ = range(210, 314) df = pd.DataFrame({'ID': id_, 'CLASS': result1}) df.to_csv("baseline.csv", index=False)
这段代码是一个基线模型,使用了支持向量回归(SVR)算法,通过 K 折交叉验证来训练模型,并对测试集进行预测。其中,训练数据集和测试数据集均为 CSV 格式的文件,需要使用 pandas 库读取。具体的实现过程如下:
1. 读取训练集和测试集的数据,并进行预处理。
```python
train = pd.read_csv('train.csv')
test = pd.read_csv('test.csv')
X_train_c = train.drop(['ID', 'CLASS'], axis=1).values
y_train_c = train['CLASS'].values
X_test_c = test.drop(['ID'], axis=1).values
```
2. 定义 K 折交叉验证器,并进行模型训练和预测。
```python
nfold = 5
kf = KFold(n_splits=nfold, shuffle=True, random_state=2020)
prediction1 = np.zeros((len(X_test_c),))
i = 0
for train_index, valid_index in kf.split(X_train_c, y_train_c):
print("\nFold {}".format(i + 1))
X_train, label_train = X_train_c[train_index], y_train_c[train_index]
X_valid, label_valid = X_train_c[valid_index], y_train_c[valid_index]
clf = SVR(kernel='rbf', C=1, gamma='scale')
clf.fit(X_train, label_train)
x1 = clf.predict(X_valid)
y1 = clf.predict(X_test_c)
prediction1 += y1 / nfold
i += 1
```
3. 对测试集的预测结果进行处理,并将结果保存到 CSV 文件中。
```python
result1 = np.round(prediction1)
id_ = range(210, 314)
df = pd.DataFrame({'ID': id_, 'CLASS': result1})
df.to_csv("baseline.csv", index=False)
```
其中,`prediction1` 是对测试集的预测结果进行累加的数组,`result1` 是将累加结果四舍五入后得到的最终预测结果。最后将结果保存到 CSV 文件中,方便后续的提交。
阅读全文