def residual_network(inputs, dropout_rate=0.1): # 第一层卷积层 x = Conv1D(64, 3, padding="same")(inputs) x = BatchNormalization()(x) x = Activation("relu")(x) # 第二层卷积层 x = Conv1D(64, 3, padding="same")(x) x = BatchNormalization()(x) x = Activation("relu")(x) # 残差块 for i in range(5): y = Conv1D(64, 3, padding="same")(x) y = BatchNormalization()(y) y = Activation("relu")(y) y = Conv1D(64, 3, padding="same")(y) y = BatchNormalization()(y) y = Add()([x, y]) x = Activation("relu")(y) x = Dropout(dropout_rate)(x) # 全局池化层和全连接层 x = Flatten()(x) x = Dense(128, activation="relu")(x) x = Dropout(dropout_rate)(x) x = Dense(3, activation="linear")(x) outputs = x return outputs # 构建模型 inputs = Input(shape=input_shape) outputs = residual_network(inputs) model = Model(inputs=inputs, outputs=outputs) # 编译模型 model.compile(loss="mean_squared_error", optimizer=Adam()) # 定义EarlyStopping回调函数 early_stopping = EarlyStopping(monitor='val_loss', patience=10, verbose=1, mode='min') # 训练模型 history = model.fit(data[..., np.newaxis], data, epochs=100, validation_split=0.2, callbacks=[early_stopping]) # 预测数据 predicted_data = model.predict(data[..., np.newaxis]) predicted_data = np.squeeze(predicted_data) # 可视化去噪前后的数据 fig, axs = plt.subplots(3, 1, figsize=(12, 8)) for i in range(3): axs[i].plot(data[:, i], label="Original Signal") axs[i].plot(predicted_data[:, i], label="Denoised Signal") axs[i].legend() plt.savefig("denoised_signal_DRN.png")
时间: 2023-06-26 14:09:18 浏览: 168
这段代码是一个使用残差网络(ResNet)对信号进行降噪的实现。主要包括构建模型、编译模型、训练模型以及预测数据等步骤。
首先,定义了一个名为`residual_network`的函数,用于构建残差网络模型。该模型包括卷积层、批归一化层、激活函数层、残差块、全局池化层和全连接层等多个层级,其中最关键的是残差块,它允许信息在网络中进行跳跃连接,有效地缓解了信息在网络中逐层传递时的信息丢失问题。
其次,通过`Input`函数定义输入层,然后将输入层作为输入传入`residual_network`函数中,得到输出层。再通过`Model`函数将输入层和输出层组合成完整的模型,用`compile`函数编译模型,定义损失函数和优化器。接着,使用`fit`函数训练模型,并通过`EarlyStopping`回调函数提前停止训练,避免模型过拟合。最后,使用训练好的模型对数据进行预测,并将预测结果可视化出来。
需要注意的是,这里使用的是`Conv1D`函数,表示一维卷积层,因为输入数据是一维信号。另外,`Dropout`函数用于在训练过程中随机断开一定比例的神经元,以减少过拟合。
相关问题
def residual_network(inputs, dropout_rate=0.1): # 第一层卷积层 x = Conv1D(64, 3, padding="same")(inputs) x = BatchNormalization()(x) x = Activation("relu")(x) # 第二层卷积层 x = Conv1D(64, 3, padding="same")(x) x = BatchNormalization()(x) x = Activation("relu")(x) # 残差块 for i in range(5): y = Conv1D(64, 3, padding="same")(x) y = BatchNormalization()(y) y = Activation("relu")(y) y = Conv1D(64, 3, padding="same")(y) y = BatchNormalization()(y) y = Add()([x, y]) x = Activation("relu")(y) x = Dropout(dropout_rate)(x) # 全局池化层和全连接层 x = Flatten()(x) x = Dense(128, activation="relu")(x) x = Dropout(dropout_rate)(x) x = Dense(3, activation="linear")(x) outputs = x return outputs # 构建模型 inputs = Input(shape=input_shape) outputs = residual_network(inputs) model = Model(inputs=inputs, outputs=outputs) # 编译模型 model.compile(loss="mean_squared_error", optimizer=Adam()) # 定义EarlyStopping回调函数 early_stopping = EarlyStopping(monitor='val_loss', patience=10, verbose=1, mode='min') # 训练模型 history = model.fit(data[..., np.newaxis], data, epochs=100, validation_split=0.2, callbacks=[early_stopping])画出流程图
好的,让我尝试为您画出这段代码的流程图。请注意,由于代码较长,我将仅展示其主要流程,具体实现细节可能需要您根据代码自行揣摩。
[输入] -> [第一层卷积层] -> [批量归一化] -> [ReLU激活函数] -> [第二层卷积层] -> [批量归一化] -> [ReLU激活函数] -> [残差块] -> [残差块] -> [残差块] -> [残差块] -> [残差块] -> [全局池化层] -> [全连接层] -> [ReLU激活函数] -> [Dropout层] -> [全连接层] -> [线性激活函数] -> [输出]
其中,[残差块]的结构如下:
[输入] -> [卷积层] -> [批量归一化] -> [ReLU激活函数] -> [卷积层] -> [批量归一化] -> [Add层] -> [ReLU激活函数] -> [Dropout层] -> [输出]
希望这个流程图对您有所帮助。
解释一下这段代码import pdb import tensorflow as tf from matplotlib import pyplot as plt import numpy as np import os from tensorflow.keras import Model from tensorflow.keras.layers import Conv2D,BatchNormalization,Activation,MaxPool2D,Dense,Dropout,Flatten,GlobalAveragePooling2D np.set_printoptions(threshold=np.inf) class ResnetBlock(Model): def __init__(self, filters, strides=1,residual_path=False): super(ResnetBlock, self).__init__() self.filters = filters self.strides = strides self.residual_path = residual_path self.c1 = Conv2D(filters, (3, 3), strides=strides, padding='same', use_bias=False) self.b1 = BatchNormalization() self.a1 = Activation('relu') self.c2 = Conv2D(filters, (3, 3), strides=1, padding='same', use_bias=False) self.b2 = BatchNormalization() if residual_path: self.down_c1 = Conv2D(filters, (1, 1),strides=strides, padding='same', use_bias=False) self.down_b1 = BatchNormalization() self.a2 = Activation('relu') def call(self, inputs): residual = inputs x = self.c1(inputs) x = self.b1(x) x = self.a1(x) x = self.c2(x) y = self.b2(x) if self.residual_path: residual = self.down_c1(inputs) residual = self.down_b1(residual) out = self.a2(y + residual) return out class ResNet18(Model): def __init__(self, block_list, initial_filters=64): super(ResNet18, self).__init__() self.num_blocks = len(block_list) self.block_list = block_list self.out_filters = initial_filters self.c1 = Conv2D(self.out_filters, (3, 3), strides=1, padding='same', use_bias=False, kernel_initializer='he_normal') self.b1 = BatchNormalization() self.a1 = Activation('relu') self.blocks = tf.keras.models.Sequential() for block_id in range(len(block_list)): for layer_id in range(block_list[block_id]): if block_id != 0 and layer_id == 0: block = ResnetBlock(self.out_filters, strides=2, residual_path=True) else: block = ResnetBlock(self.out_filters, residual_path=False) self.blocks.add(block) self.out_filters *= 2 self.p1 = tf.keras.layers.GlobalAveragePooling2D() self.f1 = tf.keras.layers.Dense(41, activation='tanh') def call(self, inputs): x = self.c1(inputs) x = self.b1(x) x = self.a1(x) x = self.blocks(x) x = self.p1(x) y = self.f1(x) return y
这段代码实现了一个ResNet18的模型。ResNet是深度学习中非常著名的神经网络模型之一,它的主要贡献在于解决了深度神经网络中的梯度消失问题,使得神经网络可以更深更复杂。ResNet18是ResNet的一个较小规模的版本,包含了18个卷积层和全连接层。这个模型的输入是一张图片,输出是一个41维的向量,用于表示图片属于41个不同类别中的哪一个。
在代码中,首先定义了一个ResnetBlock类,用于组成ResNet18中的基本模块。每个ResnetBlock包含两个卷积层和一个残差连接,其中第一个卷积层的输出经过BatchNormalization和ReLU激活函数后作为第二个卷积层的输入,第二个卷积层的输出经过BatchNormalization后和残差连接相加后再经过ReLU激活函数。如果需要进行降采样,则在残差连接中添加一个卷积层。
接着定义了一个ResNet18类,它包含了一个初始的卷积层、一系列ResnetBlock和全局平均池化层、一个全连接层。在ResNet18的构建过程中,根据传入的block_list参数的不同,逐步增加ResnetBlock的数量和输出通道数。在每个ResnetBlock中,如果需要进行降采样,则会在第一个卷积层中设置strides=2,否则为1。最后,经过全局平均池化层和全连接层,输出最终的预测结果。
在调用模型时,首先将输入图片经过初始的卷积层、BatchNormalization和ReLU激活函数,再经过一系列ResnetBlock,最后进行全局平均池化和全连接层的计算,得到预测结果。
阅读全文