test_features = all_features[n_train:].values train_features = all_features[:n_train].values

时间: 2023-11-21 09:04:48 浏览: 51
这段代码的作用是将特征数据集分成训练集和测试集,其中n_train表示训练集的大小。all_features是包含所有特征的数据集,它被转换为一个NumPy数组并保存在train_features和test_features中。train_features包含前n_train个样本的特征,而test_features则包含剩余的所有样本的特征。这种分割通常用于评估模型在未见过的数据上的性能。
相关问题

加载数据集 train_data = pd.read_csv('mnist_dataset/mnist_train.csv') test_data = pd.read_csv('mnist_dataset/mnist_test.csv') # 提取特征和标签 train_features, train_labels = train_data.iloc[:, 1:], train_data.iloc[:, 0] test_features, test_labels = test_data.iloc[:, 1:], test_data.iloc[:, 0]# 对标签进行二进制编码 lb = LabelBinarizer() train_labels = lb.fit_transform(train_labels) test_labels = lb.fit_transform(test_labels) # 将特征值缩放到0-1之间并且reshape为(28,28,1) train_features = train_features.values.reshape(-1, 28, 28, 1) / 255. test_features = test_features.values.reshape(-1, 28, 28, 1) / 255.在以上代码基础上使用tensorflow构建深度神经网络处理mnist数据集,给出代码,请注意是深度神经网络,不是卷积神经网络

好的,以下是使用 TensorFlow 构建深度神经网络处理 MNIST 数据集的代码: ```python import tensorflow as tf from tensorflow.keras.layers import Dense, Flatten # 加载数据集 train_data = pd.read_csv('mnist_dataset/mnist_train.csv') test_data = pd.read_csv('mnist_dataset/mnist_test.csv') # 提取特征和标签 train_features, train_labels = train_data.iloc[:, 1:], train_data.iloc[:, 0] test_features, test_labels = test_data.iloc[:, 1:], test_data.iloc[:, 0] # 对标签进行二进制编码 lb = LabelBinarizer() train_labels = lb.fit_transform(train_labels) test_labels = lb.fit_transform(test_labels) # 将特征值缩放到0-1之间并且reshape为(28,28,1) train_features = train_features.values.reshape(-1, 28, 28, 1) / 255. test_features = test_features.values.reshape(-1, 28, 28, 1) / 255. # 构建模型 model = tf.keras.Sequential([ Flatten(input_shape=(28, 28, 1)), Dense(256, activation='relu'), Dense(128, activation='relu'), Dense(10, activation='softmax') ]) # 编译模型 model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) # 训练模型 model.fit(train_features, train_labels, epochs=10, validation_data=(test_features, test_labels)) # 评估模型 test_loss, test_acc = model.evaluate(test_features, test_labels, verbose=2) print('Test accuracy:', test_acc) ``` 这个模型有两个隐藏层,分别是 256 和 128 个神经元,激活函数都使用 ReLU,输出层有 10 个神经元,激活函数使用 softmax。在编译模型时使用了 Adam 优化器和交叉熵损失函数。最后训练模型并评估模型的性能。

# 加载数据集 train_data = pd.read_csv('mnist_dataset/mnist_train.csv') test_data = pd.read_csv('mnist_dataset/mnist_test.csv') # 提取特征和标签 train_features, train_labels = train_data.iloc[:, 1:], train_data.iloc[:, 0] test_features, test_labels = test_data.iloc[:, 1:], test_data.iloc[:, 0]# 对标签进行二进制编码 lb = LabelBinarizer() train_labels = lb.fit_transform(train_labels) test_labels = lb.fit_transform(test_labels) # 将特征值缩放到0-1之间并且reshape为(28,28,1) train_features = train_features.values.reshape(-1, 28, 28, 1) / 255. test_features = test_features.values.reshape(-1, 28, 28, 1) / 255.在以上代码基础上使用tensorflow构建深度神经网络处理mnist数据集,给出代码

好的,以下是使用 TensorFlow 构建深度神经网络处理 MNIST 数据集的代码: ```python import tensorflow as tf from tensorflow.keras.layers import Conv2D, Flatten, Dense, MaxPooling2D, Dropout # 加载数据集 train_data = pd.read_csv('mnist_dataset/mnist_train.csv') test_data = pd.read_csv('mnist_dataset/mnist_test.csv') train_features, train_labels = train_data.iloc[:, 1:], train_data.iloc[:, 0] test_features, test_labels = test_data.iloc[:, 1:], test_data.iloc[:, 0] # 对标签进行二进制编码 lb = LabelBinarizer() train_labels = lb.fit_transform(train_labels) test_labels = lb.fit_transform(test_labels) # 将特征值缩放到0-1之间并且reshape为(28,28,1) train_features = train_features.values.reshape(-1, 28, 28, 1) / 255. test_features = test_features.values.reshape(-1, 28, 28, 1) / 255. # 构建模型 model = tf.keras.Sequential([ Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)), MaxPooling2D((2, 2)), Conv2D(64, (3, 3), activation='relu'), MaxPooling2D((2, 2)), Flatten(), Dense(128, activation='relu'), Dropout(0.5), Dense(10, activation='softmax') ]) # 编译模型 model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) # 训练模型 model.fit(train_features, train_labels, epochs=10, batch_size=32, validation_data=(test_features, test_labels)) ``` 这里使用了 `Sequential()` 方法来构建模型,该方法会按照添加的顺序自动构建网络层。模型中包含两个卷积层、两个池化层、一个全连接层和一个输出层。其中使用了 `Dropout()` 方法来防止过拟合。 在编译模型时,使用了 `categorical_crossentropy` 作为损失函数,使用了 `adam` 优化器。在训练模型时,使用了 `fit()` 方法进行训练,其中的参数分别是:训练数据集、训练标签、迭代次数、批次大小以及测试数据集和测试标签用于验证模型的效果。

相关推荐

优化这段代码:import pandas as pd import numpy as np from sklearn.ensemble import RandomForestClassifier from sklearn.feature_selection import SelectKBest, f_classif from sklearn.model_selection import train_test_split, GridSearchCV from sklearn.metrics import accuracy_score # 读取Excel文件 data = pd.read_excel("output.xlsx") # 提取特征和标签 features = data.iloc[:, 1:].values labels = np.where(data.iloc[:, 0] > 59, 1, 0) # 特征选择 selector = SelectKBest(score_func=f_classif, k=11) selected_features = selector.fit_transform(features, labels) # 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(selected_features, labels, test_size=0.2, random_state=42) # 创建随机森林分类器 rf_classifier = RandomForestClassifier() # 定义要调优的参数范围 param_grid = { 'n_estimators': [50, 100, 200], # 决策树的数量 'max_depth': [None, 5, 10], # 决策树的最大深度 'min_samples_split': [2, 5, 10], # 拆分内部节点所需的最小样本数 'min_samples_leaf': [1, 2, 4] # 叶节点上所需的最小样本数 } # 使用网格搜索进行调优 grid_search = GridSearchCV(rf_classifier, param_grid, cv=5) grid_search.fit(X_train, y_train) # 输出最佳参数组合和对应的准确率 print("最佳参数组合:", grid_search.best_params_) print("最佳准确率:", grid_search.best_score_) # 使用最佳参数组合训练模型 best_rf_classifier = grid_search.best_estimator_ best_rf_classifier.fit(X_train, y_train) # 预测 y_pred = best_rf_classifier.predict(X_test) # 计算准确率 accuracy = accuracy_score(y_test, y_pred) # 打印最高准确率分类结果 print("最高准确率分类结果:", accuracy)

import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import confusion_matrix, classification_report, accuracy_score # 1. 数据准备 train_data = pd.read_csv('train.csv') test_data = pd.read_csv('test_noLabel.csv') # 填充缺失值 train_data.fillna(train_data.mean(), inplace=True) test_data.fillna(test_data.mean(), inplace=True) # 2. 特征工程 X_train = train_data.drop(['Label', 'ID'], axis=1) y_train = train_data['Label'] X_test = test_data.drop('ID', axis=1) scaler = StandardScaler() X_train = scaler.fit_transform(X_train) X_test = scaler.transform(X_test) # 3. 模型建立 model = RandomForestClassifier(n_estimators=100, random_state=42) # 4. 模型训练 model.fit(X_train, y_train) # 5. 进行预测 y_pred = model.predict(X_test) # 6. 保存预测结果 df_result = pd.DataFrame({'ID': test_data['ID'], 'Label': y_pred}) df_result.to_csv('forecast_result.csv', index=False) # 7. 模型评估 y_train_pred = model.predict(X_train) print('训练集准确率:', accuracy_score(y_train, y_train_pred)) print('测试集准确率:', accuracy_score(y_test, y_pred)) print(classification_report(y_test, y_pred)) # 8. 绘制柱形图 feature_importances = pd.Series(model.feature_importances_, index=X_train.columns) feature_importances = feature_importances.sort_values(ascending=False) plt.figure(figsize=(10, 6)) sns.barplot(x=feature_importances, y=feature_importances.index) plt.xlabel('Feature Importance Score') plt.ylabel('Features') plt.title('Visualizing Important Features') plt.show() # 9. 对比类分析 train_data['Label'].value_counts().plot(kind='bar', color=['blue', 'red']) plt.title('Class Distribution') plt.xlabel('Class') plt.ylabel('Frequency') plt.show()

目标编码 def gen_target_encoding_feats(train, train_2, test, encode_cols, target_col, n_fold=10): '''生成target encoding特征''' # for training set - cv tg_feats = np.zeros((train.shape[0], len(encode_cols))) kfold = StratifiedKFold(n_splits=n_fold, random_state=1024, shuffle=True) for _, (train_index, val_index) in enumerate(kfold.split(train[encode_cols], train[target_col])): df_train, df_val = train.iloc[train_index], train.iloc[val_index] for idx, col in enumerate(encode_cols): # get all possible values for the current column col_values = set(train[col].unique()) if None in col_values: col_values.remove(None) # replace value with mode if it does not appear in the training set mode = train[col].mode()[0] df_val.loc[~df_val[col].isin(col_values), f'{col}_mean_target'] = mode test.loc[~test[col].isin(col_values), f'{col}_mean_target'] = mode target_mean_dict = df_train.groupby(col)[target_col].mean() if df_val[f'{col}_mean_target'].empty: df_val[f'{col}_mean_target'] = df_val[col].map(target_mean_dict) tg_feats[val_index, idx] = df_val[f'{col}_mean_target'].values for idx, encode_col in enumerate(encode_cols): train[f'{encode_col}_mean_target'] = tg_feats[:, idx] # for train_2 set - cv tg_feats = np.zeros((train_2.shape[0], len(encode_cols))) kfold = StratifiedKFold(n_splits=n_fold, random_state=1024, shuffle=True) for _, (train_index, val_index) in enumerate(kfold.split(train_2[encode_cols], train_2[target_col])): df_train, df_val = train_2.iloc[train_index], train_2.iloc[val_index] for idx, col in enumerate(encode_cols): target_mean_dict = df_train.groupby(col)[target_col].mean() if df_val[f'{col}_mean_target'].insull.any(): df_val[f'{col}_mean_target'] = df_val[col].map(target_mean_dict) tg_feats[val_index, idx] = df_val[f'{col}_mean_target'].values for idx, encode_col in enumerate(encode_cols): train_2[f'{encode_col}_mean_target'] = tg_feats[:, idx] # for testing set for col in encode_cols: target_mean_dict = train.groupby(col)[target_col].mean() test[f'{col}_mean_target'] = test[col].map(target_mean_dict) return train, train_2, test features = ['house_exist', 'debt_loan_ratio', 'industry', 'title'] train_1, train_2, test = gen_target_encoding_feats(train_1, train_2, test, features, ['isDefault'], n_fold=10)检查错误和警告并修改

最新推荐

recommend-type

docker 安装教程.md

附件是docker安装教程,文件绿色安全,请大家放心下载,仅供交流学习使用,无任何商业目的!
recommend-type

数学建模算法与程序大全pdf电子书(司).zip

数学建模算法与程序大全pdf电子书(司).zip
recommend-type

数据结构课程设计:模块化比较多种排序算法

本篇文档是关于数据结构课程设计中的一个项目,名为“排序算法比较”。学生针对专业班级的课程作业,选择对不同排序算法进行比较和实现。以下是主要内容的详细解析: 1. **设计题目**:该课程设计的核心任务是研究和实现几种常见的排序算法,如直接插入排序和冒泡排序,并通过模块化编程的方法来组织代码,提高代码的可读性和复用性。 2. **运行环境**:学生在Windows操作系统下,利用Microsoft Visual C++ 6.0开发环境进行编程。这表明他们将利用C语言进行算法设计,并且这个环境支持高效的性能测试和调试。 3. **算法设计思想**:采用模块化编程策略,将排序算法拆分为独立的子程序,比如`direct`和`bubble_sort`,分别处理直接插入排序和冒泡排序。每个子程序根据特定的数据结构和算法逻辑进行实现。整体上,算法设计强调的是功能的分块和预想功能的顺序组合。 4. **流程图**:文档包含流程图,可能展示了程序设计的步骤、数据流以及各部分之间的交互,有助于理解算法执行的逻辑路径。 5. **算法设计分析**:模块化设计使得程序结构清晰,每个子程序仅在被调用时运行,节省了系统资源,提高了效率。此外,这种设计方法增强了程序的扩展性,方便后续的修改和维护。 6. **源代码示例**:提供了两个排序函数的代码片段,一个是`direct`函数实现直接插入排序,另一个是`bubble_sort`函数实现冒泡排序。这些函数的实现展示了如何根据算法原理操作数组元素,如交换元素位置或寻找合适的位置插入。 总结来说,这个课程设计要求学生实际应用数据结构知识,掌握并实现两种基础排序算法,同时通过模块化编程的方式展示算法的实现过程,提升他们的编程技巧和算法理解能力。通过这种方式,学生可以深入理解排序算法的工作原理,同时学会如何优化程序结构,提高程序的性能和可维护性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

STM32单片机小车智能巡逻车设计与实现:打造智能巡逻车,开启小车新时代

![stm32单片机小车](https://img-blog.csdnimg.cn/direct/c16e9788716a4704af8ec37f1276c4dc.png) # 1. STM32单片机简介及基础** STM32单片机是意法半导体公司推出的基于ARM Cortex-M内核的高性能微控制器系列。它具有低功耗、高性能、丰富的外设资源等特点,广泛应用于工业控制、物联网、汽车电子等领域。 STM32单片机的基础架构包括CPU内核、存储器、外设接口和时钟系统。其中,CPU内核负责执行指令,存储器用于存储程序和数据,外设接口提供与外部设备的连接,时钟系统为单片机提供稳定的时钟信号。 S
recommend-type

devc++如何监视

Dev-C++ 是一个基于 Mingw-w64 的免费 C++ 编程环境,主要用于 Windows 平台。如果你想监视程序的运行情况,比如查看内存使用、CPU 使用率、日志输出等,Dev-C++ 本身并不直接提供监视工具,但它可以在编写代码时结合第三方工具来实现。 1. **Task Manager**:Windows 自带的任务管理器可以用来实时监控进程资源使用,包括 CPU 占用、内存使用等。只需打开任务管理器(Ctrl+Shift+Esc 或右键点击任务栏),然后找到你的程序即可。 2. **Visual Studio** 或 **Code::Blocks**:如果你习惯使用更专业的
recommend-type

哈夫曼树实现文件压缩解压程序分析

"该文档是关于数据结构课程设计的一个项目分析,主要关注使用哈夫曼树实现文件的压缩和解压缩。项目旨在开发一个实用的压缩程序系统,包含两个可执行文件,分别适用于DOS和Windows操作系统。设计目标中强调了软件的性能特点,如高效压缩、二级缓冲技术、大文件支持以及友好的用户界面。此外,文档还概述了程序的主要函数及其功能,包括哈夫曼编码、索引编码和解码等关键操作。" 在数据结构课程设计中,哈夫曼树是一种重要的数据结构,常用于数据压缩。哈夫曼树,也称为最优二叉树,是一种带权重的二叉树,它的构造原则是:树中任一非叶节点的权值等于其左子树和右子树的权值之和,且所有叶节点都在同一层上。在这个文件压缩程序中,哈夫曼树被用来生成针对文件中字符的最优编码,以达到高效的压缩效果。 1. 压缩过程: - 首先,程序统计文件中每个字符出现的频率,构建哈夫曼树。频率高的字符对应较短的编码,反之则对应较长的编码。这样可以使得频繁出现的字符用较少的位来表示,从而降低存储空间。 - 接着,使用哈夫曼编码将原始文件中的字符转换为对应的编码序列,完成压缩。 2. 解压缩过程: - 在解压缩时,程序需要重建哈夫曼树,并根据编码序列还原出原来的字符序列。这涉及到索引编码和解码,通过递归函数如`indexSearch`和`makeIndex`实现。 - 为了提高效率,程序采用了二级缓冲技术,它能减少磁盘I/O次数,提高读写速度。 3. 软件架构: - 项目包含了两个可执行文件,`DosHfm.exe`适用于DOS系统,体积小巧,运行速度快;而`WinHfm.exe`则为Windows环境设计,提供了更友好的图形界面。 - 程序支持最大4GB的文件压缩,这是Fat32文件系统的限制。 4. 性能特点: - 除了基本的压缩和解压缩功能外,软件还提供了一些额外的特性,如显示压缩进度、文件一致性检查等。 - 哈夫曼编码的使用提高了压缩率,而二级缓冲技术使压缩速度提升了75%以上。 这个项目不仅展示了数据结构在实际问题中的应用,还体现了软件工程的实践,包括需求分析、概要设计以及关键算法的实现。通过这样的课程设计,学生可以深入理解数据结构和算法的重要性,并掌握实际编程技能。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

STM32单片机小车硬件优化策略:优化硬件设计,让小车更稳定更可靠

![STM32单片机小车硬件优化策略:优化硬件设计,让小车更稳定更可靠](https://static.mianbaoban-assets.eet-china.com/xinyu-images/MBXY-CR-c138c506ec1b17b643c23c4884fd9882.png) # 1. STM32单片机小车硬件优化策略概述 STM32单片机小车在实际应用中,硬件优化至关重要。本文将深入探讨STM32单片机小车硬件优化策略,从硬件设计、元器件选型、安装、调试、可靠性到维护等方面进行全面的分析,旨在帮助开发者提升小车的性能、稳定性和使用寿命。 # 2. 硬件设计优化 硬件设计优化是S
recommend-type

android studio购物车源码

在Android Studio中,购物车功能通常涉及到一个应用中的UI设计、数据管理、以及可能的网络请求。源码通常包含以下几个主要部分: 1. **UI组件**:如RecyclerView用于展示商品列表,每个商品项可能是Adapter中的ViewHolder。会有一个添加到购物车按钮和一个展示当前购物车内容的部分。 2. **数据模型**:商品类(通常包含商品信息如名称、价格、图片等)、购物车类(可能存储商品列表、总价等)。 3. **添加/删除操作**:在用户点击添加到购物车时,会处理商品的添加逻辑,并可能更新数据库或缓存。 4. **数据库管理**:使用SQLite或其他持久化解