CUDA out of memory. Tried to allocate 798.00 MiB
时间: 2023-08-27 09:17:05 浏览: 165
引用内存不足RuntimeError: CUDA out of memory. Tried to allocate 16.00 MiB (GPU 0; 2.00 GiB total cap..._cuda out of memory. tried to allocate 4.88 gib (gp_周小董的博客-CSDN博客 。 引用和引用中,都有类似的错误信息,显示了程序尝试分配的内存大小和GPU的总内存容量。根据这些信息,可以得出结论是分配的内存超过了GPU的容量,导致内存溢出。
为了解决这个问题,可以尝试以下几种方法:
1. 减少模型的参数数量或减少输入数据的尺寸,以降低内存需求。
2. 增加GPU的内存容量,可以考虑使用更高容量的GPU或者在多个GPU上进行计算。
3. 使用PyTorch的内存优化技术,例如使用torch.no_grad()来减少内存占用或使用torch.cuda.empty_cache()来释放缓存的内存。
总结来说,当出现CUDA out of memory错误时,需要注意内存的使用情况,适当调整模型和数据的大小,或者通过升级硬件来增加内存容量,以解决内存溢出的问题。<span class="em">1</span><span class="em">2</span><span class="em">3</span>
#### 引用[.reference_title]
- *1* *3* [CUDA out of memory. Tried to allocate 16.00 MiB (GPU 0; 6.00 GiB total capacity;总结(1)](https://blog.csdn.net/qq_38148600/article/details/120060303)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"]
- *2* [解决:RuntimeError: CUDA out of ... Tried to allocate 160.00 MiB (GPU 0; 10.76 GiB total capacity..](https://blog.csdn.net/zcyzcyjava/article/details/127509058)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"]
[ .reference_list ]
阅读全文