使用pytorch编写一个详细的Dncnn
时间: 2024-10-20 15:16:35 浏览: 39
Deep Neural Network (DnCNN)是一种用于图像去噪声的经典深度学习模型,PyTorch是一个流行的Python库,非常适合构建这类模型。以下是一个简单的DnCNN在PyTorch中的实现步骤:
首先,确保安装了必要的库:
```bash
pip install torch torchvision numpy
```
然后,创建一个基础的DnCNN模型结构,它通常包含卷积层、批归一化层和ReLU激活函数:
```python
import torch.nn as nn
class DnCNN(nn.Module):
def __init__(self, in_channels, out_channels, n_layers=17, kernel_size=3, stride=1, padding=1, dilation=1):
super(DnCNN, self).__init__()
layers = []
for _ in range(n_layers):
layers += [
nn.Conv2d(in_channels, out_channels, kernel_size, stride=stride, padding=padding, dilation=dilation),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True)
]
if _ % 2 == 0: # 每隔两层加入一个降采样层
layers.append(nn.AvgPool2d(kernel_size=2)) # 下采样
in_channels //= 2
# 添加最后一层,去除下采样的操作
layers += [nn.Conv2d(out_channels, out_channels, kernel_size=kernel_size, stride=1, padding=padding, dilation=dilation)]
layers.append(nn.Tanh()) # 输出需要的是像素值范围在[-1, 1]内的数据,所以这里使用tanh作为激活函数
self.dncnn = nn.Sequential(*layers)
def forward(self, x):
return self.dncnn(x)
```
接下来,你可以训练这个模型,比如使用L1 loss和Adam优化器:
```python
model = DnCNN(3, 3) # 输入3通道的RGB图像,输出也是3通道
optimizer = torch.optim.Adam(model.parameters(), lr=1e-4)
criterion = nn.L1Loss()
# 训练过程...
for epoch in range(num_epochs):
noisy_image = add_noise(image) # 噪声添加部分
clean_image = model(noisy_image)
loss = criterion(clean_image, ground_truth_image)
optimizer.zero_grad()
loss.backward()
optimizer.step()
```
阅读全文