用pytouch编写DnCNN网络
时间: 2024-03-17 19:41:10 浏览: 158
好的,下面是用PyTorch编写DnCNN网络的步骤:
1. 导入必要的库和模块:
```
import torch
import torch.nn as nn
```
2. 定义DnCNN网络的类,包括卷积层、残差块和反卷积层:
```
class DnCNN(nn.Module):
def __init__(self, channels, num_of_layers=17):
super(DnCNN, self).__init__()
kernel_size = 3
padding = 1
features = 64
layers = []
layers.append(nn.Conv2d(in_channels=channels, out_channels=features, kernel_size=kernel_size, padding=padding, bias=False))
layers.append(nn.ReLU(inplace=True))
for i in range(num_of_layers - 2):
layers.append(nn.Conv2d(in_channels=features, out_channels=features, kernel_size=kernel_size, padding=padding, bias=False))
layers.append(nn.BatchNorm2d(features))
layers.append(nn.ReLU(inplace=True))
layers.append(nn.Conv2d(in_channels=features, out_channels=channels, kernel_size=kernel_size, padding=padding, bias=False))
self.dncnn = nn.Sequential(*layers)
def forward(self, x):
out = self.dncnn(x)
return out
```
3. 实例化DnCNN网络:
```
channels = 3 # 输入和输出的通道数
num_of_layers = 17 # 残差块的数量
model = DnCNN(channels, num_of_layers)
```
4. 定义损失函数和优化器:
```
criterion = nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=1e-4)
```
5. 训练模型:
```
for epoch in range(num_epochs):
for i, data in enumerate(train_loader):
inputs, labels = data
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
```
6. 测试模型:
```
with torch.no_grad():
for data in test_loader:
inputs, labels = data
outputs = model(inputs)
loss = criterion(outputs, labels)
```
阅读全文