贝叶斯优化时序信号快速非局部均值去噪Python代码
时间: 2023-12-28 14:05:44 浏览: 94
快速非局部去噪算法
5星 · 资源好评率100%
以下是使用贝叶斯优化的时序信号快速非局部均值去噪的Python代码:
```python
import numpy as np
from scipy.signal import fftconvolve
from skopt import gp_minimize
def non_local_means_denoise(signal, kernel_size, h, sigma):
"""
使用贝叶斯优化的时序信号快速非局部均值去噪
参数:
signal: ndarray,待去噪的信号
kernel_size: int,滤波器的大小
h: float,平滑参数
sigma: float,噪声标准差
返回值:
ndarray,去噪后的信号
"""
# 构造滑动窗口,用于计算局部均值
window = np.ones(kernel_size) / kernel_size
def objective(x):
"""
目标函数,计算该参数下的误差
参数:
x: tuple,(h, sigma)
返回值:
float,误差
"""
# 计算平滑参数和噪声标准差
h, sigma = x
# 计算非局部均值
mean = fftconvolve(signal, window, mode='same')
diff = signal - mean
weights = np.exp(-diff ** 2 / (2 * sigma ** 2))
weights /= np.sum(weights, axis=0)
denoised_signal = np.sum(weights * signal, axis=0)
# 计算误差
mse = np.mean((denoised_signal - signal) ** 2)
return mse
# 使用贝叶斯优化寻找最优参数
result = gp_minimize(
objective,
[(0.001, 0.1), (0.001, 0.1)],
n_random_starts=5,
n_calls=20,
verbose=False
)
# 使用最优参数进行去噪
h, sigma = result.x
mean = fftconvolve(signal, window, mode='same')
diff = signal - mean
weights = np.exp(-diff ** 2 / (2 * sigma ** 2))
weights /= np.sum(weights, axis=0)
denoised_signal = np.sum(weights * signal, axis=0)
return denoised_signal
```
使用示例:
```python
import matplotlib.pyplot as plt
# 构造带噪声的信号
t = np.linspace(0, 1, 200)
signal = np.sin(2 * np.pi * t) + 0.1 * np.random.randn(200)
# 去噪
denoised_signal = non_local_means_denoise(signal, 10, 0.05, 0.1)
# 绘制原始信号和去噪后的信号
plt.plot(t, signal, label='原始信号')
plt.plot(t, denoised_signal, label='去噪后的信号')
plt.legend()
plt.show()
```
阅读全文