def thread_choice(self): # mask setting mask = self.call_mask() # divider instance divider = RecursiveDivider() # two image stitching if None not in [self.opt.img1, self.opt.img2]: data = divider.list_divide([self.opt.img1, self.opt.img2]) self.process(data, mask) # multi image stitching elif self.opt.imgs is not None: data = divider.list_divide(self.opt.imgs) self.process(data, mask) # image (root + txt list merging) or (absolute) path stitching elif None not in [self.opt.imgroot, self.opt.imglist]: datalist = self.call_dataset(self.opt.imglist, root=self.opt.imgroot) for data in datalist: data = divider.list_divide(data) self.process(data, mask) # self.process(data, mask) # error else: print('please enter input options.')

时间: 2024-02-10 20:33:14 浏览: 149
这段代码是一个图像拼接程序的一部分,它对输入参数进行选择,并根据选择的参数对图像进行拼接。具体来说,它通过以下步骤进行图像拼接: 1. 设置掩膜(mask); 2. 实例化一个递归分割器(RecursiveDivider); 3. 如果输入参数中同时提供了两张图像(self.opt.img1和self.opt.img2),则对这两张图像进行拼接; 4. 如果输入参数中提供了多张图像(self.opt.imgs),则对这些图像进行拼接; 5. 如果输入参数中同时提供了一个图像根目录(self.opt.imgroot)和一个包含图像文件名列表的文本文件(self.opt.imglist),则对这些文件中列出的所有图像进行拼接; 6. 如果输入参数不符合上述任何一种情况,则输出错误信息。 总之,这个函数是用来控制图像拼接过程的流程和参数选择的。
相关问题

android:id="@+id/rv_list" android:layout_width="match_parent" android:layout_height="0dp" android:layout_marginBottom="50dp" android:divider="#FFFFFF" android:background="@drawable/underline" android:dividerHeight="30dp" app:layout_constraintBottom_toBottomOf="parent" app:layout_constraintTop_toBottomOf="@+id/areaState" android:layout_marginTop="4dp" android:layout_marginLeft="4dp" android:layout_marginRight="4dp" android:clipToPadding="false" android:scrollbarStyle="outsideOverlay" android:paddingBottom="20dp" android:layoutDirection="rtl" android:layout_weight="1" android:paddingTop="8dp" android:elevation="8dp"

这是一个RecyclerView的布局代码,其中设置了对齐方式、分割线、背景、边距、padding等属性。其中app:layout_constraintBottom_toBottomOf="parent"表示该控件与父布局底部对齐,app:layout_constraintTop_toBottomOf="@+id/areaState"表示该控件与id为areaState的控件底部对齐,android:clipToPadding="false"表示不裁剪padding部分的内容,android:scrollbarStyle="outsideOverlay"表示滚动条在内容之上,android:layoutDirection="rtl"表示布局方向为从右到左,android:layout_weight="1"表示该控件在布局中所占比例为1:1。最后,android:elevation="8dp"可以设置控件的高度。

<ListView android:id="@+id/rv_list" android:layout_width="match_parent" android:layout_height="0dp" android:layout_marginBottom="10dp" android:divider="#F32828" android:background="@drawable/item_border_background" app:layout_constraintBottom_toBottomOf="parent" app:layout_constraintTop_toBottomOf="@+id/areaState" />怎么设置每个item的边框格式

要设置 `ListView` 的每个子项的边框格式,你需要定义一个 `item_layout.xml` 文件作为子项的布局,并在其中设置子项的边框格式。 1. 在 `res/layout` 目录下创建一个名为 `item_layout.xml` 的文件,文件内容如下: ```xml <LinearLayout xmlns:android="http://schemas.android.com/apk/res/android" android:orientation="vertical" android:layout_width="match_parent" android:padding="10dp" android:background="@drawable/item_border_background" android:layout_height="wrap_content"> <!-- 在这里添加子项的其他视图 --> </LinearLayout> ``` 上面的代码定义了一个竖直方向的线性布局,其中添加了一个内边距和一个背景边框。 2. 在 `ListView` 的布局文件中,将 `android:layout` 属性设置为 `@layout/item_layout`,即: ```xml <ListView android:id="@+id/rv_list" android:layout_width="match_parent" android:layout_height="0dp" android:layout_marginBottom="10dp" android:divider="#F32828" app:layout_constraintBottom_toBottomOf="parent" app:layout_constraintTop_toBottomOf="@+id/areaState" android:background="@android:color/transparent" android:listSelector="@drawable/list_selector" android:layout_marginTop="4dp" android:layout_marginLeft="4dp" android:layout_marginRight="4dp" android:layout_marginBottom="4dp" android:clipToPadding="false" android:scrollbarStyle="outsideOverlay" android:paddingBottom="20dp" android:layoutDirection="rtl" android:fastScrollEnabled="true" android:layout_weight="1" android:layout="@layout/item_layout" /> ``` 这样就可以为每个子项设置边框格式了。你可以根据需要修改 `item_layout.xml` 文件中的属性来调整子项的布局和边框样式。
阅读全文

相关推荐

解释一下这段代码module top( input clk, output ad_clk, (* MARK_DEBUG = "TRUE") input [7:0] ad_data ); parameter DIVIDER = 16; reg [3:0] cout = 4'b0000; reg clk_sample=1'b0; //reg [7:0] last; //reg [7:0] data; always @(posedge clk) begin if (cout == DIVIDER - 1) begin cout <= 4'b0000; clk_sample <= ~clk_sample; // 反转时钟信号 end else begin cout <= cout + 1; end end assign ad_clk=~clk_sample; reg [15:0] data_out; reg[7:0] delay_pipeline1= 8'b0 ; reg[7:0] delay_pipeline2= 8'b0 ; reg[7:0] delay_pipeline3= 8'b0 ; reg[7:0] delay_pipeline4= 8'b0 ; reg[7:0] delay_pipeline5= 8'b0 ; reg[7:0] delay_pipeline6= 8'b0 ; reg[7:0] delay_pipeline7= 8'b0 ; reg[7:0] delay_pipeline8= 8'b0 ; reg[7:0] delay_pipeline9= 8'b0 ; always@(posedge clk_sample) begin delay_pipeline1 <= ad_data ; delay_pipeline2 <= delay_pipeline1 ; delay_pipeline3 <= delay_pipeline2 ; delay_pipeline4 <= delay_pipeline3 ; delay_pipeline5 <= delay_pipeline4 ; delay_pipeline6 <= delay_pipeline5 ; delay_pipeline7 <= delay_pipeline6 ; delay_pipeline8 <=delay_pipeline7 ; delay_pipeline9<= delay_pipeline8 ; end wire[7:0] coeff1 = 8'd7; wire[7:0] coeff2 = 8'd5; wire[7:0] coeff3 = 8'd51; wire[7:0] coeff4 = 8'd135; wire[7:0] coeff5 = 8'd179; wire[7:0] coeff6 = 8'd135; wire[7:0] coeff7 = 8'd51; wire[7:0] coeff8 = 8'd5; wire[7:0] coeff9 = 8'd7; reg signed [16:0] multi_data1=17'b0 ; reg signed [16:0] multi_data2=17'b0 ; reg signed [16:0] multi_data3=17'b0 ; reg signed [16:0] multi_data4=17'b0 ; reg signed [16:0] multi_data5=17'b0 ; reg signed [16:0] multi_data6=17'b0 ; reg signed [16:0] multi_data7=17'b0 ; reg signed [16:0] multi_data8=17'b0 ; reg signed [16:0] multi_data9=17'b0 ; //x(n) * h(n-k) always@(posedge clk_sample) begin multi_data1 <= delay_pipeline1coeff1 ; multi_data2 <= delay_pipeline2coeff2 ; multi_data3 <= delay_pipeline3coeff3 ; multi_data4 <= delay_pipeline4coeff4 ; multi_data5 <= delay_pipeline5coeff5 ; multi_data6 <= delay_pipeline6coeff6 ; multi_data7 <= delay_pipeline7coeff7; multi_data8 <= delay_pipeline8coeff8; multi_data9 <= delay_pipeline9coeff9 ; data_out <= multi_data1 + multi_data2 + multi_data3 + multi_data4 +multi_data5 + multi_data6 + multi_data7 + multi_data8 + multi_data9 ; end ila_0 ila_1( .clk(clk), .probe0(ad_clk), .probe1(data_out), .probe2(ad_data) ); endmodule

最新推荐

recommend-type

yolov3 在 Open Images 数据集上预训练了 SPP 权重以及配置文件.zip

yolov3 在 Open Images 数据集上预训练了 SPP 权重以及配置文件如果权重无法下载,则可能是存储库超出了 git lfs 配额。请从没有此限制的bitbucket 存储库中提取。此存储库包含 yolov3 权重以及配置文件。该模型在Kaggle Open Images 挑战赛的私有 LB 上实现了 42.407 的 mAP 。为了使用这些权重,您需要安装darknet 。您可以在项目网站上阅读更多相关信息。有多种方法可以使用 darknet 进行检测。一种方法是创建一个 txt 文件,其中包含要运行检测的图像的路径,并从包含的 yolo.data 文件中指向该文件。运行检测的命令(假设 darknet 安装在该 repo 的根目录中)是 ./darknet/darknet detector valid yolo.data yolov3-spp.cfg yolov3-spp_final.weights我分享这些权重是因为它们可能对某些人有用。如果您遇到任何问题,我无法提供任何支持。Yolo 不太容易排除故障,如果您遇到段错误,则需要您自己找出问题所
recommend-type

qt 5.3.2 mingw 安装包

qt 5.3.2 mingw 安装包
recommend-type

JHU荣誉单变量微积分课程教案介绍

资源摘要信息:"jhu2017-18-honors-single-variable-calculus" 知识点一:荣誉单变量微积分课程介绍 本课程为JHU(约翰霍普金斯大学)的荣誉单变量微积分课程,主要针对在2018年秋季和2019年秋季两个学期开设。课程内容涵盖两个学期的微积分知识,包括整合和微分两大部分。该课程采用IBL(Inquiry-Based Learning)格式进行教学,即学生先自行解决问题,然后在学习过程中逐步掌握相关理论知识。 知识点二:IBL教学法 IBL教学法,即问题导向的学习方法,是一种以学生为中心的教学模式。在这种模式下,学生在教师的引导下,通过提出问题、解决问题来获取知识,从而培养学生的自主学习能力和问题解决能力。IBL教学法强调学生的主动参与和探索,教师的角色更多的是引导者和协助者。 知识点三:课程难度及学习方法 课程的第一次迭代主要包含问题,难度较大,学生需要有一定的数学基础和自学能力。第二次迭代则在第一次的基础上增加了更多的理论和解释,难度相对降低,更适合学生理解和学习。这种设计旨在帮助学生从实际问题出发,逐步深入理解微积分理论,提高学习效率。 知识点四:课程先决条件及学习建议 课程的先决条件为预演算,即在进入课程之前需要掌握一定的演算知识和技能。建议在使用这些笔记之前,先完成一些基础演算的入门课程,并进行一些数学证明的练习。这样可以更好地理解和掌握课程内容,提高学习效果。 知识点五:TeX格式文件 标签"TeX"意味着该课程的资料是以TeX格式保存和发布的。TeX是一种基于排版语言的格式,广泛应用于学术出版物的排版,特别是在数学、物理学和计算机科学领域。TeX格式的文件可以确保文档内容的准确性和排版的美观性,适合用于编写和分享复杂的科学和技术文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战篇:自定义损失函数】:构建独特损失函数解决特定问题,优化模型性能

![损失函数](https://img-blog.csdnimg.cn/direct/a83762ba6eb248f69091b5154ddf78ca.png) # 1. 损失函数的基本概念与作用 ## 1.1 损失函数定义 损失函数是机器学习中的核心概念,用于衡量模型预测值与实际值之间的差异。它是优化算法调整模型参数以最小化的目标函数。 ```math L(y, f(x)) = \sum_{i=1}^{N} L_i(y_i, f(x_i)) ``` 其中,`L`表示损失函数,`y`为实际值,`f(x)`为模型预测值,`N`为样本数量,`L_i`为第`i`个样本的损失。 ## 1.2 损
recommend-type

如何在ZYNQMP平台上配置TUSB1210 USB接口芯片以实现Host模式,并确保与Linux内核的兼容性?

要在ZYNQMP平台上实现TUSB1210 USB接口芯片的Host模式功能,并确保与Linux内核的兼容性,首先需要在硬件层面完成TUSB1210与ZYNQMP芯片的正确连接,保证USB2.0和USB3.0之间的硬件电路设计符合ZYNQMP的要求。 参考资源链接:[ZYNQMP USB主机模式实现与测试(TUSB1210)](https://wenku.csdn.net/doc/6nneek7zxw?spm=1055.2569.3001.10343) 具体步骤包括: 1. 在Vivado中设计硬件电路,配置USB接口相关的Bank502和Bank505引脚,同时确保USB时钟的正确配置。
recommend-type

Naruto爱好者必备CLI测试应用

资源摘要信息:"Are-you-a-Naruto-Fan:CLI测验应用程序,用于检查Naruto狂热者的知识" 该应用程序是一个基于命令行界面(CLI)的测验工具,设计用于测试用户对日本动漫《火影忍者》(Naruto)的知识水平。《火影忍者》是由岸本齐史创作的一部广受欢迎的漫画系列,后被改编成同名电视动画,并衍生出一系列相关的产品和文化现象。该动漫讲述了主角漩涡鸣人从忍者学校开始的成长故事,直到成为木叶隐村的领袖,期间包含了忍者文化、战斗、忍术、友情和忍者世界的政治斗争等元素。 这个测验应用程序的开发主要使用了JavaScript语言。JavaScript是一种广泛应用于前端开发的编程语言,它允许网页具有交互性,同时也可以在服务器端运行(如Node.js环境)。在这个CLI应用程序中,JavaScript被用来处理用户的输入,生成问题,并根据用户的回答来评估其对《火影忍者》的知识水平。 开发这样的测验应用程序可能涉及到以下知识点和技术: 1. **命令行界面(CLI)开发:** CLI应用程序是指用户通过命令行或终端与之交互的软件。在Web开发中,Node.js提供了一个运行JavaScript的环境,使得开发者可以使用JavaScript语言来创建服务器端应用程序和工具,包括CLI应用程序。CLI应用程序通常涉及到使用诸如 commander.js 或 yargs 等库来解析命令行参数和选项。 2. **JavaScript基础:** 开发CLI应用程序需要对JavaScript语言有扎实的理解,包括数据类型、函数、对象、数组、事件循环、异步编程等。 3. **知识库构建:** 测验应用程序的核心是其问题库,它包含了与《火影忍者》相关的各种问题。开发人员需要设计和构建这个知识库,并确保问题的多样性和覆盖面。 4. **逻辑和流程控制:** 在应用程序中,需要编写逻辑来控制测验的流程,比如问题的随机出现、计时器、计分机制以及结束时的反馈。 5. **用户界面(UI)交互:** 尽管是CLI,用户界面仍然重要。开发者需要确保用户体验流畅,这包括清晰的问题呈现、简洁的指令和友好的输出格式。 6. **模块化和封装:** 开发过程中应当遵循模块化原则,将不同的功能分隔开来,以便于管理和维护。例如,可以将问题生成器、计分器和用户输入处理器等封装成独立的模块。 7. **单元测试和调试:** 测验应用程序在发布前需要经过严格的测试和调试。使用如Mocha或Jest这样的JavaScript测试框架可以编写单元测试,并通过控制台输出调试信息来排除故障。 8. **部署和分发:** 最后,开发完成的应用程序需要被打包和分发。如果是基于Node.js的应用程序,常见的做法是将其打包为可执行文件(如使用electron或pkg工具),以便在不同的操作系统上运行。 根据提供的文件信息,虽然具体细节有限,但可以推测该应用程序可能采用了上述技术点。用户通过点击提供的链接,可能将被引导到一个网页或直接下载CLI应用程序的可执行文件,从而开始进行《火影忍者》的知识测验。通过这个测验,用户不仅能享受答题的乐趣,还可以加深对《火影忍者》的理解和认识。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【强化学习损失函数探索】:奖励函数与损失函数的深入联系及优化策略

![【强化学习损失函数探索】:奖励函数与损失函数的深入联系及优化策略](https://cdn.codeground.org/nsr/images/img/researchareas/ai-article4_02.png) # 1. 强化学习中的损失函数基础 强化学习(Reinforcement Learning, RL)是机器学习领域的一个重要分支,它通过与环境的互动来学习如何在特定任务中做出决策。在强化学习中,损失函数(loss function)起着至关重要的作用,它是学习算法优化的关键所在。损失函数能够衡量智能体(agent)的策略(policy)表现,帮助智能体通过减少损失来改进自
recommend-type

如何在Springboot后端项目中实现前端的多人视频会议功能,并使用Vue.js与ElementUI进行界面开发?

要在Springboot后端项目中实现前端的多人视频会议功能,首先需要了解Springboot、WebRTC、Vue.js以及ElementUI的基本概念和用途。Springboot作为后端框架,负责处理业务逻辑和提供API接口;WebRTC技术则用于实现浏览器端的实时视频和音频通信;Vue.js作为一个轻量级的前端框架,用于构建用户界面;ElementUI提供了丰富的UI组件,可加速前端开发过程。 参考资源链接:[多人视频会议前端项目:Springboot与WebRTC的结合](https://wenku.csdn.net/doc/6jkpejn9x3?spm=1055.2569.3001