二叉排序树的基本运算c++

时间: 2023-12-20 16:32:36 浏览: 56
二叉排序树(Binary Search Tree,BST)是一种特殊的二叉树,它满足以下性质: 1. 左子树上所有节点的值小于根节点的值; 2. 右子树上所有节点的值大于根节点的值; 3. 左右子树也分别为二叉排序树。 二叉排序树的基本运算包括入、删除和遍历操作。 1.入操作: 插入操作的原理是将新节点按照叉排序树的性质插入到合的位置。插入方式可以通过递归或循环实。 2. 删除操作: 删除操作的原理是找到要删除的节点,并根据不同情况进行删除。C++中可以使用递归实现删除操作。 3. 遍历操作: 遍历操作是按照一定的顺序访问二叉排序树中的所有节点。常见的遍历方式有前序遍历、中序遍历、后序遍历和层次遍历。 以下是C++实现二叉排序树基本运算的示例代码: ```cpp #include <iostream> using namespace std; struct TreeNode { int val; TreeNode* left; TreeNode* right; TreeNode(int x) : val(x), left(NULL), right(NULL) {} }; // 插入操作 TreeNode* insert(TreeNode* root, int val) { if (root == NULL) { return new TreeNode(val); } if (val < root->val) { root->left = insert(root->left, val); } else { root->right = insert(root->right, val); } return root; } // 删除操作 TreeNode* remove(TreeNode* root, int val) { if (root == NULL) { return NULL; } if (val < root->val) { root->left = remove(root->left, val); } else if (val > root->val) { root->right = remove(root->right, val); } else { if (root->left == NULL) { TreeNode* temp = root->right; delete root; return temp; } else if (root->right == NULL) { TreeNode* temp = root->left; delete root; return temp; } else { TreeNode* temp = root->right; while (temp->left != NULL) { temp = temp->left; } root->val = temp->val; root->right = remove(root->right, temp->val); } } return root; } // 前序遍历 void preorder(TreeNode* root) { if (root == NULL) { return; } cout << root->val << " "; preorder(root->left); preorder(root->right); } // 中序遍历 void inorder(TreeNode* root) { if (root == NULL) { return; } inorder(root->left); cout << root->val << " "; inorder(root->right); } // 后序遍历 void postorder(TreeNode* root) { if (root == NULL) { return; } postorder(root->left); postorder(root->right); cout << root->val << " "; } // 层次遍历 void levelorder(TreeNode* root) { if (root == NULL) { return; } queue<TreeNode*> q; q.push(root); while (!q.empty()) { TreeNode* node = q.front(); q.pop(); cout << node->val << " "; if (node->left != NULL) { q.push(node->left); } if (node->right != NULL) { q.push(node->right); } } } int main() { TreeNode* root = NULL; root = insert(root, 5); root = insert(root, 3); root = insert(root, 7); root = insert(root, 2); root = insert(root, 4); root = insert(root, 6); root = insert(root, 8); cout << "前序遍历结果:"; preorder(root); cout << endl; cout << "中序遍历结果:"; inorder(root); cout << endl; cout << "后序遍历结果:"; postorder(root); cout << endl; cout << "层次遍历结果:"; levelorder(root); cout << endl; root = remove(root, 3); cout << "删除节点后的中序遍历结果:"; inorder(root); cout << endl; return 0; } ```

相关推荐

最新推荐

recommend-type

二叉排序树运算课程设计报告

基本任务:(1)选择合适的存储结构构造二叉排序树;(2) 对二叉排序树T作中序遍历,输出结果;(3)在二叉排序树中实现多种方式的查找,并给出二叉排序树中插入和删除的操作。(4)尽量给出“顺序和链式”两种不同...
recommend-type

C++稀疏矩阵的各种基本运算并实现加法乘法

今天小编就为大家分享一篇关于C++稀疏矩阵的各种基本运算并实现加法乘法,小编觉得内容挺不错的,现在分享给大家,具有很好的参考价值,需要的朋友一起跟随小编来看看吧
recommend-type

数字信号处理实验报告-(1)-时域离散信号的基本运算.doc

数字信号处理实验报告-(1)-时域离散信号的基本运算,有代码,几乎每行都有注释,高清原图,完全能看得懂的那种
recommend-type

数据结构_图的基本运算代码

#include"MGraph.h" #define INFTY 1000 template struct ENode { ENode() {nextArc=NULL;} ENode(int vertex,T weight,ENode *next) { adjVex=vertex; w=weight; nextArc=next; } int adjVex;...
recommend-type

Numpy——numpy的基本运算

排序15.转置16.clip()函数 1.初始化两个矩阵 import numpy as np a=np.array([11,22,33,44,55,66]) b=np.arange(6) print(a) print(b) #输出 [11 22 33 44 55 66] [0 1 2 3 4 5] 上述代码中的 a 和 b
recommend-type

RTL8188FU-Linux-v5.7.4.2-36687.20200602.tar(20765).gz

REALTEK 8188FTV 8188eus 8188etv linux驱动程序稳定版本, 支持AP,STA 以及AP+STA 共存模式。 稳定支持linux4.0以上内核。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

:YOLOv1目标检测算法:实时目标检测的先驱,开启计算机视觉新篇章

![:YOLOv1目标检测算法:实时目标检测的先驱,开启计算机视觉新篇章](https://img-blog.csdnimg.cn/img_convert/69b98e1a619b1bb3c59cf98f4e397cd2.png) # 1. 目标检测算法概述 目标检测算法是一种计算机视觉技术,用于识别和定位图像或视频中的对象。它在各种应用中至关重要,例如自动驾驶、视频监控和医疗诊断。 目标检测算法通常分为两类:两阶段算法和单阶段算法。两阶段算法,如 R-CNN 和 Fast R-CNN,首先生成候选区域,然后对每个区域进行分类和边界框回归。单阶段算法,如 YOLO 和 SSD,一次性执行检
recommend-type

info-center source defatult

这是一个 Cisco IOS 命令,用于配置 Info Center 默认源。Info Center 是 Cisco 设备的日志记录和报告工具,可以用于收集和查看设备的事件、警报和错误信息。该命令用于配置 Info Center 默认源,即设备的默认日志记录和报告服务器。在命令行界面中输入该命令后,可以使用其他命令来配置默认源的 IP 地址、端口号和协议等参数。
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。