numpy.ndarray转list的代码
时间: 2024-05-20 07:17:18 浏览: 81
可以使用tolist()函数将numpy.ndarray转换为list。
示例代码:
import numpy as np
# 创建一个numpy数组
arr = np.array([[1, 2, 3], [4, 5, 6]])
# 将numpy.ndarray转换为list
lst = arr.tolist()
print('原始数组:')
print(arr)
print('转换后的列表:')
print(lst)
输出结果:
原始数组:
[[1 2 3]
[4 5 6]]
转换后的列表:
[[1, 2, 3], [4, 5, 6]]
注意:tolist()函数返回的是一个嵌套的列表,如果数组是多维的,转换后的列表也是多维的。
相关问题
python numpy.ndarray 转list
可以使用tolist()函数将numpy.ndarray转换为list。
是的,可以使用 `tolist()` 函数将 NumPy 数组转换为 Python 列表。例如,如果 `arr` 是一个 NumPy 数组,你可以使用以下代码将其转换为列表:
```python
import numpy as np
arr = np.array([1, 2, 3])
lst = arr.tolist()
```
现在,`lst` 是一个 Python 列表,它包含与 `arr` 相同的元素。当您创建一个NumPy数组时,您可以将其视为具有以下属性的列表:
1. 数组的维数或轴数,也称为rank。
2. 数组的形状,即每个轴的长度。
3. 数组的数据类型,例如整数、浮点数或布尔值。
此外,NumPy数组还具有许多有用的属性和方法,包括:
1. ndarray.ndim:数组的轴数或维数(rank)。
2. ndarray.shape:数组的形状,以整数元组的形式返回,例如(3,4)表示3行4列的矩阵。
3. ndarray.size:数组中元素的总数。
4. ndarray.dtype:描述数组中元素类型的对象,例如numpy.int32、numpy.int16或numpy.float64等。
5. ndarray.itemsize:数组中每个元素的字节大小。
6. ndarray.data:包含数组实际元素的缓冲区,通常不需要直接访问它。
下面是一个例子:
```
import numpy as np
# 创建一个形状为(2,3)的二维数组
a = np.array([[1,2,3], [4,5,6]])
print("ndim:", a.ndim) # 输出: 2
print("shape:", a.shape) # 输出: (2, 3)
print("size:", a.size) # 输出: 6
print("dtype:", a.dtype) # 输出: int64
print("itemsize:", a.itemsize) # 输出: 8
print("data:", a.data) # 输出: <memory at 0x7fb93883e9a0>
```
python numpy.ndarray转list
可以使用tolist()函数将numpy.ndarray转换为list。
是的,可以使用 `tolist()` 函数将 NumPy 数组转换为 Python 列表。例如,如果 `arr` 是一个 NumPy 数组,你可以使用以下代码将其转换为列表:
```python
import numpy as np
arr = np.array([1, 2, 3])
lst = arr.tolist()
```
现在,`lst` 是一个 Python 列表,它包含与 `arr` 相同的元素。当您创建一个NumPy数组时,您可以将其视为具有以下属性的列表:
1. 数组的维数或轴数,也称为rank。
2. 数组的形状,即每个轴的长度。
3. 数组的数据类型,例如整数、浮点数或布尔值。
此外,NumPy数组还具有许多有用的属性和方法,包括:
1. ndarray.ndim:数组的轴数或维数(rank)。
2. ndarray.shape:数组的形状,以整数元组的形式返回,例如(3,4)表示3行4列的矩阵。
3. ndarray.size:数组中元素的总数。
4. ndarray.dtype:描述数组中元素类型的对象,例如numpy.int32、numpy.int16或numpy.float64等。
5. ndarray.itemsize:数组中每个元素的字节大小。
6. ndarray.data:包含数组实际元素的缓冲区,通常不需要直接访问它。
下面是一个例子:
```
import numpy as np
# 创建一个形状为(2,3)的二维数组
a = np.array([[1,2,3], [4,5,6]])
print("ndim:", a.ndim) # 输出: 2
print("shape:", a.shape) # 输出: (2, 3)
print("size:", a.size) # 输出: 6
print("dtype:", a.dtype) # 输出: int64
print("itemsize:", a.itemsize) # 输出: 8
print("data:", a.data) # 输出: <memory at 0x7fb93883e9a0>
```
阅读全文