r2 = 1 - np.sum((y_train - y_pred) ** 2) / np.sum((y_train - np.mean(y_train)) ** 2) # 计算拟合度R2

时间: 2024-05-23 08:16:17 浏览: 48
这段代码用于计算回归模型的拟合度R2。具体来说,R2表示模型对数据的拟合程度,取值范围在0和1之间。当R2值越接近1时,说明模型拟合得越好;当R2值越接近0时,说明模型拟合得越差。该计算方式基于残差平方和(即y_train - y_pred的平方和)和总平方和(即y_train - 平均值的平方和)之间的比率。
相关问题

编写pytorch代码,定义LSTMAttention模型,定义个FA_CPSO优化算法,读取特征训练集X_train和标签训练集y_train,训练模型,利用萤火虫随机扰动的参数和混沌映射系数调整粒子群参数,调用优化算法去优化模型的损失函数,将最优的参数设置给模型,然后在读取特征测试集X_test和标签测试集y_test,再测试集上测试模型,继续优化模型,将优化后的参数设置给模型,并输出测试损失,绘制测试集的预测值和实际值,计算测试集的均方根误差,加载预测集,绘制预测集的实际值和预测值

好的,我明白了。下面是代码实现: ```python import torch import torch.nn as nn import numpy as np import random # 定义LSTMAttention模型 class LSTMAttention(nn.Module): def __init__(self, input_size, hidden_size, output_size): super(LSTMAttention, self).__init__() self.hidden_size = hidden_size self.lstm = nn.LSTM(input_size, hidden_size, batch_first=True) self.linear = nn.Linear(hidden_size, output_size) self.softmax = nn.Softmax(dim=1) def forward(self, inputs): output, _ = self.lstm(inputs) attention_weights = self.softmax(self.linear(output)) context_vector = torch.sum(attention_weights * output, dim=1) output = self.linear(context_vector) return output # 定义FA_CPSO优化算法 class Particle: def __init__(self, position, velocity, fitness, personal_best_position, personal_best_fitness): self.position = position self.velocity = velocity self.fitness = fitness self.personal_best_position = personal_best_position self.personal_best_fitness = personal_best_fitness class Swarm: def __init__(self, num_particles, num_params, X_train, y_train, X_test, y_test): self.num_particles = num_particles self.num_params = num_params self.X_train = X_train self.y_train = y_train self.X_test = X_test self.y_test = y_test self.particles = [] self.global_best_position = None self.global_best_fitness = float('inf') self.w = 0.729 self.c1 = 1.49445 self.c2 = 1.49445 # 初始化粒子群 for i in range(self.num_particles): position = np.random.uniform(low=-1.0, high=1.0, size=self.num_params) velocity = np.zeros(self.num_params) fitness = self.evaluate(position) personal_best_position = np.copy(position) personal_best_fitness = fitness particle = Particle(position, velocity, fitness, personal_best_position, personal_best_fitness) self.particles.append(particle) # 计算模型的损失函数 def evaluate(self, position): model = LSTMAttention(input_size=1, hidden_size=32, output_size=1) optimizer = torch.optim.Adam(model.parameters(), lr=0.01) criterion = nn.MSELoss() num_epochs = 100 # 调整模型参数 for epoch in range(num_epochs): inputs = torch.from_numpy(self.X_train).unsqueeze(2).float() labels = torch.from_numpy(self.y_train).float() optimizer.zero_grad() outputs = model(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() # 使用模型预测测试集并计算损失函数 inputs = torch.from_numpy(self.X_test).unsqueeze(2).float() labels = torch.from_numpy(self.y_test).float() outputs = model(inputs) test_loss = criterion(outputs, labels) return test_loss.item() # 更新粒子群的位置和速度 def update(self): for particle in self.particles: r1 = random.random() r2 = random.random() # 更新速度 particle.velocity = self.w * particle.velocity \ + self.c1 * r1 * (particle.personal_best_position - particle.position) \ + self.c2 * r2 * (self.global_best_position - particle.position) # 更新位置 particle.position = particle.position + particle.velocity # 更新个体最优解 fitness = self.evaluate(particle.position) if fitness < particle.personal_best_fitness: particle.personal_best_position = np.copy(particle.position) particle.personal_best_fitness = fitness # 更新全局最优解 if fitness < self.global_best_fitness: self.global_best_position = np.copy(particle.position) self.global_best_fitness = fitness # 扰动粒子群的参数 def perturb(self, chaos_map): for particle in self.particles: for i in range(len(particle.position)): particle.position[i] = particle.position[i] + chaos_map[i] # 运行粒子群优化算法 def run(self, num_iterations): chaos_map = self.generate_chaos_map() for i in range(num_iterations): self.update() self.perturb(chaos_map) print('Iteration:', i, ', Best fitness:', self.global_best_fitness) # 产生萤火虫随机扰动的参数 def generate_chaos_map(self): x = 0.1 y = 0.1 z = 0.1 a = 10 b = 28 c = 8/3 chaos_map = [] for i in range(self.num_params): x_new = y - x y_new = x * (b - z) - y z_new = x * y - c * z x = x_new y = y_new z = z_new chaos_map.append(a * abs(z)) return chaos_map # 读取特征训练集X_train和标签训练集y_train X_train = np.load('X_train.npy') y_train = np.load('y_train.npy') # 读取特征测试集X_test和标签测试集y_test X_test = np.load('X_test.npy') y_test = np.load('y_test.npy') # 定义粒子群 swarm = Swarm(num_particles=10, num_params=32, X_train=X_train, y_train=y_train, X_test=X_test, y_test=y_test) # 运行粒子群优化算法 swarm.run(num_iterations=50) # 将最优的参数设置给模型 model = LSTMAttention(input_size=1, hidden_size=32, output_size=1) model.load_state_dict(torch.load('best_model.pt')) # 在测试集上测试模型 inputs = torch.from_numpy(X_test).unsqueeze(2).float() labels = torch.from_numpy(y_test).float() outputs = model(inputs) test_loss = nn.MSELoss()(outputs, labels) print('Test loss:', test_loss.item()) # 绘制测试集的预测值和实际值 import matplotlib.pyplot as plt plt.plot(outputs.detach().numpy(), label='Predicted') plt.plot(labels.numpy(), label='Actual') plt.legend() plt.show() # 计算测试集的均方根误差 from sklearn.metrics import mean_squared_error rmse = mean_squared_error(labels.numpy(), outputs.detach().numpy(), squared=False) print('Test RMSE:', rmse) # 加载预测集 X_pred = np.load('X_pred.npy') # 预测并绘制预测集的实际值和预测值 inputs = torch.from_numpy(X_pred).unsqueeze(2).float() outputs = model(inputs) plt.plot(outputs.detach().numpy(), label='Predicted') plt.legend() plt.show() ``` 需要注意的是,这只是一种实现方式,具体的实现方法可能因为数据的不同而有所不同。因此,您需要根据自己的数据和需求进行适当的修改。

编写pytorch代码,定义LSTMAttention模型,定义一个CPSO优化算法,用FA_CPSO算法有优化模型中神经元个数、dropout比率、batch_size、学习率等超参数,将优化好的超参数传递给模型,在特征训练集X_train.csv和标签训练集y_train.csv上训练模型,将最优的参数设置给模型,在特征测试集X_test.csv和标签测试集y_test.csv上测试模型,进一步优化模型,将优化后的参数设置给模型,并输出测试损失,绘制测试集的预测值和实际值,计算测试集的均方根误差,在预测集上进行预测,设定标签数据最大值的85%为警戒线,绘制预测集的实际值到达的时间和预测值到达的时间

好的,我可以帮你解答这个问题。首先是定义LSTMAttention模型的pytorch代码: ```python import torch import torch.nn as nn class LSTMAttention(nn.Module): def __init__(self, input_size, hidden_size, output_size): super(LSTMAttention, self).__init__() self.hidden_size = hidden_size self.lstm = nn.LSTM(input_size, hidden_size, batch_first=True) self.attention_layer = nn.Linear(hidden_size, 1) self.fc = nn.Linear(hidden_size, output_size) self.softmax = nn.Softmax(dim=1) def forward(self, inputs): lstm_out, _ = self.lstm(inputs) attention_scores = self.attention_layer(lstm_out) attention_weights = self.softmax(attention_scores) context_vector = torch.sum(attention_weights * lstm_out, dim=1) output = self.fc(context_vector) return output ``` 上面代码中,`LSTMAttention`类继承自`nn.Module`,定义了一个带有注意力机制的LSTM模型。其中,`input_size`表示输入特征的维度,`hidden_size`表示LSTM隐藏层的维度,`output_size`表示输出的维度。 然后是定义CPSO优化算法的代码: ```python import numpy as np class CPSO: def __init__(self, num_particles, num_dimensions, max_iterations, objective_func): self.num_particles = num_particles self.num_dimensions = num_dimensions self.max_iterations = max_iterations self.objective_func = objective_func self.particles = np.random.uniform(0, 1, size=(num_particles, num_dimensions)) self.velocities = np.zeros((num_particles, num_dimensions)) self.best_positions = self.particles.copy() self.best_scores = np.zeros(num_particles) for i in range(num_particles): self.best_scores[i] = self.objective_func(self.best_positions[i]) self.global_best_position = self.best_positions[self.best_scores.argmin()] self.global_best_score = self.best_scores.min() def optimize(self): for iteration in range(self.max_iterations): for i in range(self.num_particles): r1 = np.random.uniform(0, 1, size=self.num_dimensions) r2 = np.random.uniform(0, 1, size=self.num_dimensions) self.velocities[i] = self.velocities[i] + r1 * (self.best_positions[i] - self.particles[i]) + r2 * (self.global_best_position - self.particles[i]) self.particles[i] = self.particles[i] + self.velocities[i] self.particles[i] = np.clip(self.particles[i], 0, 1) score = self.objective_func(self.particles[i]) if score < self.best_scores[i]: self.best_scores[i] = score self.best_positions[i] = self.particles[i] if score < self.global_best_score: self.global_best_score = score self.global_best_position = self.particles[i] return self.global_best_position ``` 上面代码中,`CPSO`类接受四个参数:`num_particles`表示粒子数,`num_dimensions`表示维度数,`max_iterations`表示最大迭代次数,`objective_func`表示目标函数。在初始化时,我们随机初始化粒子的位置和速度,并计算出每个粒子的最优位置和最优得分,以及全局最优位置和最优得分。在优化过程中,我们根据公式更新粒子的速度和位置,并更新每个粒子的最优位置和最优得分,以及全局最优位置和最优得分。最终返回全局最优位置。 接下来是使用FA_CPSO算法优化模型中的超参数的代码: ```python import pandas as pd from sklearn.model_selection import train_test_split from sklearn.metrics import mean_squared_error from functools import partial # 加载数据 X_train = pd.read_csv('X_train.csv') y_train = pd.read_csv('y_train.csv') X_test = pd.read_csv('X_test.csv') y_test = pd.read_csv('y_test.csv') # 定义目标函数 def objective_func(params, X_train, y_train): # 解析参数 num_neurons, dropout_rate, batch_size, learning_rate = params # 定义模型 model = LSTMAttention(input_size=X_train.shape[2], hidden_size=num_neurons, output_size=1) loss_fn = nn.MSELoss() optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate) # 训练模型 train_dataset = torch.utils.data.TensorDataset(torch.tensor(X_train.values).float(), torch.tensor(y_train.values).float()) train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True) for epoch in range(10): for X_batch, y_batch in train_loader: optimizer.zero_grad() y_pred = model(X_batch) loss = loss_fn(y_pred, y_batch) loss.backward() optimizer.step() # 计算测试误差 y_pred = model(torch.tensor(X_test.values).float()) test_loss = mean_squared_error(y_test, y_pred.detach().numpy()) return test_loss # 定义参数范围 param_ranges = [ (16, 256), # num_neurons (0.1, 0.5), # dropout_rate (16, 128), # batch_size (0.001, 0.01), # learning_rate ] # 定义优化器 num_particles = 20 num_dimensions = len(param_ranges) max_iterations = 50 objective_func_partial = partial(objective_func, X_train=X_train, y_train=y_train) cpso = CPSO(num_particles, num_dimensions, max_iterations, objective_func_partial) # 进行优化 best_params = cpso.optimize() # 解析最优参数 num_neurons, dropout_rate, batch_size, learning_rate = best_params ``` 上面代码中,我们先加载训练集和测试集数据,然后定义目标函数`objective_func`,该函数接受一个参数`params`,表示模型的超参数,然后在训练集上训练模型,最后计算测试误差。我们还定义了一个`objective_func_partial`函数,该函数是`objective_func`的偏函数,用来传递训练集和测试集数据。 然后我们定义了参数范围`param_ranges`,用来指定每个超参数的取值范围。接着定义了优化器`cpso`,该优化器接受四个参数:`num_particles`表示粒子数,`num_dimensions`表示维度数,`max_iterations`表示最大迭代次数,`objective_func_partial`表示目标函数。在调用`cpso.optimize()`函数时,会返回最优的超参数。 最后,我们解析出最优的超参数,并将其传递给模型进行训练和测试。 在训练和测试模型后,我们可以使用如下代码绘制测试集的预测值和实际值,计算测试集的均方根误差(RMSE),并在预测集上进行预测: ```python import matplotlib.pyplot as plt # 计算测试误差 y_pred = model(torch.tensor(X_test.values).float()) test_loss = mean_squared_error(y_test, y_pred.detach().numpy()) test_rmse = np.sqrt(test_loss) # 绘制测试集的预测值和实际值 plt.plot(y_test.values, label='True') plt.plot(y_pred.detach().numpy(), label='Predicted') plt.legend() plt.show() # 输出测试误差和RMSE print('Test loss:', test_loss) print('Test RMSE:', test_rmse) # 在预测集上进行预测 X_pred = pd.read_csv('X_pred.csv') y_pred = model(torch.tensor(X_pred.values).float()) # 计算警戒线 y_max = y_train.max().values[0] warning_line = 0.85 * y_max # 绘制预测集的实际值到达的时间和预测值到达的时间 y_pred_values = y_pred.detach().numpy().squeeze() y_pred_times = np.argwhere(y_pred_values >= warning_line).squeeze() plt.plot(y_pred_values, label='Predicted') plt.axhline(y=warning_line, color='r', linestyle='--', label='Warning Line') for i in y_pred_times: plt.axvline(x=i, color='g', linestyle='--') plt.legend() plt.show() ``` 上面代码中,我们先计算测试误差和RMSE,并绘制测试集的预测值和实际值。然后输出测试误差和RMSE。最后,我们加载预测集数据,使用模型进行预测,计算警戒线,绘制预测集的实际值到达的时间和预测值到达的时间。

相关推荐

最新推荐

recommend-type

5020-微信小程序基于JAVA微信点餐小程序设计+ssm(源码+数据库+lun文).zip

本系统主要针对计算机相关专业的正在做毕业设计的学生和需要项目实战练习的学习者,可作为毕业设计、课程设计、期末大作业。本系统主要针对计算机相关专业的正在做毕业设计的学生和需要项目实战练习的学习者,可作为毕业设计、课程设计、期末大作业。本系统主要针对计算机相关专业的正在做毕业设计的学生和需要项目实战练习的学习者,可作为毕业设计、课程设计、期末大作业。本系统主要针对计算机相关专业的正在做毕业设计的学生和需要项目实战练习的学习者,可作为毕业设计、课程设计、期末大作业。
recommend-type

基于 Flask 的数字猜谜系统.zip

该项目是一个基于 Flask 框架的数字猜谜游戏。通过 Flask 搭建了一个 Web 应用,用户可以通过界面参与数字猜谜游戏。项目简单易懂,适合初学者了解 Flask 框架的基本使用以及 Web 开发的基础知识。同时,该项目也有一定的娱乐性质,可以提供给用户休闲娱乐的时光。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看ReaDME.md文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。
recommend-type

5206-微信小程序投票评选系统的设计与实现ssm(源码+数据库+lun文).zip

本系统主要针对计算机相关专业的正在做毕业设计的学生和需要项目实战练习的学习者,可作为毕业设计、课程设计、期末大作业。本系统主要针对计算机相关专业的正在做毕业设计的学生和需要项目实战练习的学习者,可作为毕业设计、课程设计、期末大作业。本系统主要针对计算机相关专业的正在做毕业设计的学生和需要项目实战练习的学习者,可作为毕业设计、课程设计、期末大作业。本系统主要针对计算机相关专业的正在做毕业设计的学生和需要项目实战练习的学习者,可作为毕业设计、课程设计、期末大作业。本系统主要针对计算机相关专业的正在做毕业设计的学生和需要项目实战练习的学习者,可作为毕业设计、课程设计、期末大作业。本系统主要针对计算机相关专业的正在做毕业设计的学生和需要项目实战练习的学习者,可作为毕业设计、课程设计、期末大作业。
recommend-type

PeaZip 64 bit 9.9.1 free 解压缩工具 杜绝360垃圾

PeaZip 64 bit 9.9.1 free 解压缩工具 杜绝360垃圾
recommend-type

vit_keras-0.0.12-py3-none-any.whl

该资源为vit_keras-0.0.12-py3-none-any.whl,欢迎下载使用哦!
recommend-type

C++多态实现机制详解:虚函数与早期绑定

C++多态性实现机制是面向对象编程的重要特性,它允许在运行时根据对象的实际类型动态地调用相应的方法。本文主要关注于虚函数的使用,这是实现多态的关键技术之一。虚函数在基类中声明并被标记为virtual,当派生类重写该函数时,基类的指针或引用可以正确地调用派生类的版本。 在例1-1中,尽管定义了fish类,但基类animal中的breathe()方法并未被声明为虚函数。因此,当我们创建一个fish对象fh,并将其地址赋值给animal类型的指针pAn时,编译器在编译阶段就已经确定了函数的调用地址,这就是早期绑定。这意味着pAn指向的是animal类型的对象,所以调用的是animal类的breathe()函数,而不是fish类的版本,输出结果自然为"animalbreathe"。 要实现多态性,需要在基类中将至少一个成员函数声明为虚函数。这样,即使通过基类指针调用,也能根据实际对象的类型动态调用相应的重载版本。在C++中,使用关键字virtual来声明虚函数,如`virtual void breathe();`。如果在派生类中重写了这个函数,例如在fish类中定义`virtual void breathe() { cout << "fishbubble" << endl; }`,那么即使使用animal类型的指针,也能调用到fish类的breathe()方法。 内存模型的角度来看,当一个派生类对象被赋值给基类指针时,基类指针只存储了派生类对象的基类部分的地址。因此,即使进行类型转换,也只是访问基类的公共成员,而不会访问派生类特有的私有或保护成员。这就解释了为什么即使指针指向的是fish对象,调用的还是animal的breathe()函数。 总结来说,C++多态性是通过虚函数和早期/晚期绑定来实现的。理解这两个概念对于编写可扩展和灵活的代码至关重要。在设计程序时,合理使用多态能够提高代码的复用性和可维护性,使得程序结构更加模块化。通过虚函数,可以在不改变接口的情况下,让基类指针动态调用不同类型的子类对象上的同名方法,从而展现C++强大的继承和封装特性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

Parallelization Techniques for Matlab Autocorrelation Function: Enhancing Efficiency in Big Data Analysis

# 1. Introduction to Matlab Autocorrelation Function The autocorrelation function is a vital analytical tool in time-domain signal processing, capable of measuring the similarity of a signal with itself at varying time lags. In Matlab, the autocorrelation function can be calculated using the `xcorr
recommend-type

matlab处理nc文件,nc文件是1979-2020年的全球降雨数据,获取一个省份区域内的日降雨量,代码怎么写

在MATLAB中处理`.nc`(NetCDF)文件通常需要使用`netcdf`函数库,它是一个用于读写多种科学数据格式的工具。对于全球降雨数据,你可以按照以下步骤编写代码: 1. 安装必要的库(如果还没有安装): ```matlab % 如果你尚未安装 netcdf 包,可以安装如下: if ~exist('netcdf', 'dir') disp('Installing the NetCDF toolbox...') addpath(genpath(fullfile(matlabroot,'toolbox','nco'))); end ``` 2. 加载nc文件并查看其结
recommend-type

Java多线程与异常处理详解

"Java多线程与进程调度是编程领域中的重要概念,尤其是在Java语言中。多线程允许程序同时执行多个任务,提高系统的效率和响应速度。Java通过Thread类和相关的同步原语支持多线程编程,而进程则是程序的一次执行实例,拥有独立的数据区域。线程作为进程内的执行单元,共享同一地址空间,减少了通信成本。多线程在单CPU系统中通过时间片轮转实现逻辑上的并发执行,而在多CPU系统中则能实现真正的并行。 在Java中,异常处理是保证程序健壮性的重要机制。异常是程序运行时发生的错误,通过捕获和处理异常,可以确保程序在遇到问题时能够优雅地恢复或终止,而不是崩溃。Java的异常处理机制使用try-catch-finally语句块来捕获和处理异常,提供了更高级的异常类型以及finally块确保关键代码的执行。 Jdb是Java的调试工具,特别适合调试多线程程序。它允许开发者设置断点,查看变量状态,单步执行代码,从而帮助定位和解决问题。在多线程环境中,理解线程的生命周期和状态(如新建、运行、阻塞、等待、结束)以及如何控制线程的执行顺序和同步是至关重要的。 Java的多线程支持包括Thread类和Runnable接口。通过继承Thread类或者实现Runnable接口,用户可以创建自己的线程。线程间同步是多线程编程中的一大挑战,Java提供了synchronized关键字、wait()、notify()和notifyAll()等方法来解决这个问题,防止数据竞争和死锁的发生。 在实际应用中,多线程常用于网络编程、数据库访问、GUI应用程序(如Swing或JavaFX)的事件处理、服务器端的并发处理等场景。例如,一个Web服务器可能需要同时处理多个客户端请求,这时使用多线程可以显著提升性能。此外,多线程在动画制作、游戏开发、多媒体应用等领域也发挥着重要作用,因为它允许同时处理渲染、计算和用户交互等多个任务。 Java的多线程与进程调度是构建高效、健壮应用的基础,而异常处理则提升了程序的稳定性。通过深入理解和熟练运用这些概念,开发者可以创建出更加灵活和可靠的软件系统。"