编写java程序,实现sql血缘关系解析,要求使用druid实现,实现表血缘关系以及字段血缘关系,sql输入类型为MySQL、clickhouse、ElsticSearch
时间: 2024-02-27 09:53:14 浏览: 220
以下是一个使用Druid实现SQL血缘关系解析的Java程序,支持MySQL、ClickHouse和Elasticsearch三种数据库类型:
```java
import com.alibaba.druid.sql.SQLUtils;
import com.alibaba.druid.sql.ast.SQLStatement;
import com.alibaba.druid.sql.ast.statement.SQLSelectStatement;
import com.alibaba.druid.sql.dialect.clickhouse.parser.ClickhouseStatementParser;
import com.alibaba.druid.sql.dialect.elasticjob.parser.ElasticsearchStatementParser;
import com.alibaba.druid.sql.dialect.mysql.parser.MySqlStatementParser;
import com.alibaba.druid.sql.visitor.SchemaStatVisitor;
import java.util.List;
import java.util.Set;
public class SqlBloodlineParser {
public static void main(String[] args) {
String sql = "SELECT t1.a, t2.b FROM table1 t1 JOIN table2 t2 ON t1.id = t2.id WHERE t1.a > 10";
String dbType = "mysql";
// String dbType = "clickhouse";
// String dbType = "elasticsearch";
Bloodline bloodline = parseSql(sql, dbType);
System.out.println(bloodline);
}
public static Bloodline parseSql(String sql, String dbType) {
// 解析SQL,获取AST
SQLStatement statement = null;
switch (dbType) {
case "mysql":
statement = new MySqlStatementParser(sql).parseStatement();
break;
case "clickhouse":
statement = new ClickhouseStatementParser(sql).parseStatement();
break;
case "elasticsearch":
statement = new ElasticsearchStatementParser(sql).parseStatement();
break;
default:
throw new IllegalArgumentException("Unsupported db type: " + dbType);
}
SQLSelectStatement selectStatement = (SQLSelectStatement) statement;
// 获取AST中的表名和列名
SchemaStatVisitor visitor = new SchemaStatVisitor();
selectStatement.accept(visitor);
Set<String> tables = visitor.getTables().keySet();
Set<String> columns = visitor.getColumns().keySet();
// 构造血缘关系对象
Bloodline bloodline = new Bloodline();
for (String table : tables) {
bloodline.addTable(table);
}
for (String column : columns) {
bloodline.addColumn(column);
}
List<SchemaStatVisitor.ForeignKey> foreignKeys = visitor.getForeignKeyList();
for (SchemaStatVisitor.ForeignKey foreignKey : foreignKeys) {
String fromTable = foreignKey.getReferencingTable();
String fromColumn = foreignKey.getReferencingColumns().get(0);
String toTable = foreignKey.getReferencedTable();
String toColumn = foreignKey.getReferencedColumns().get(0);
bloodline.addForeignKey(fromTable, fromColumn, toTable, toColumn);
}
return bloodline;
}
}
```
在以上代码中,我们根据不同数据库类型使用不同的`Parser`类解析SQL语句,然后通过`SchemaStatVisitor`访问AST中的表名和列名,从而获取血缘关系。最后,我们构造`Bloodline`对象表示表和字段之间的血缘关系,其中`addTable`方法添加表名,`addColumn`方法添加列名,`addForeignKey`方法添加外键关系。
需要注意的是,以上代码只是一个简单的示例,实际使用中需要根据具体需求进行修改和扩展。此外,需要手动指定表和列的信息,以便进行血缘关系计算。
阅读全文