lbp特征提取python代码
时间: 2023-09-11 11:04:24 浏览: 151
以下是LBP特征提取的Python代码:
```python
import numpy as np
import cv2
def lbp(image):
# 将图像转换为灰度图
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# LBP算法中使用的3*3邻域
radius = 1
n_points = 8
height, width = gray.shape
# 计算LBP图像
lbp_image = np.zeros((height-2*radius, width-2*radius), dtype=np.uint8)
for i in range(radius, height-radius):
for j in range(radius, width-radius):
center = gray[i, j]
code = 0
for k in range(n_points):
x = i + int(round(radius * np.cos(2 * np.pi * k / n_points)))
y = j - int(round(radius * np.sin(2 * np.pi * k / n_points)))
if gray[x, y] > center:
code += 1 << k
lbp_image[i-radius, j-radius] = code
# 计算LBP特征
hist, _ = np.histogram(lbp_image, bins=np.arange(0, 2**n_points+1), density=True)
return hist
```
其中,`image`是输入的图像,函数返回LBP特征直方图。在代码中使用了OpenCV库来读取和处理图像。`radius`表示LBP算法中邻域的半径,`n_points`表示邻域中采样点的个数,通常取8或16。函数中首先将图像转换为灰度图,然后计算LBP图像,最后计算LBP特征直方图。
阅读全文