var = tf.train.load_variable(ckpt_path, var_name) new_var_name = var_name.replace('vgg_16', 'feature') new_var_name = new_var_name.replace("weights", "kernel") new_var_name = new_var_name.replace("biases", "bias") new_var_name = new_var_name.replace("conv1/conv1_1", "conv2d") new_var_name = new_var_name.replace("conv1/conv1_2", "conv2d_1") new_var_name = new_var_name.replace("conv2/conv2_1", "conv2d_2") new_var_name = new_var_name.replace("conv2/conv2_2", "conv2d_3") new_var_name = new_var_name.replace("conv3/conv3_1", "conv2d_4") new_var_name = new_var_name.replace("conv3/conv3_2", "conv2d_5") new_var_name = new_var_name.replace("conv3/conv3_3", "conv2d_6") new_var_name = new_var_name.replace("conv4/conv4_1", "conv2d_7") new_var_name = new_var_name.replace("conv4/conv4_2", "conv2d_8") new_var_name = new_var_name.replace("conv4/conv4_3", "conv2d_9") new_var_name = new_var_name.replace("conv5/conv5_1", "conv2d_10") new_var_name = new_var_name.replace("conv5/conv5_2", "conv2d_11") new_var_name = new_var_name.replace("conv5/conv5_3", "conv2d_12")
时间: 2024-05-02 11:21:26 浏览: 225
这段代码的作用是将原始变量名转换为新的变量名。首先,使用 tf.train.load_variable() 方法加载 ckpt_path 中的 var_name 变量,并将其存储在 var 中。然后,根据一定的规则将 var_name 转换为 new_var_name。具体来说,这段代码将 vgg_16 替换为 feature,将 weights 替换为 kernel,将 biases 替换为 bias,将 conv1/conv1_1 替换为 conv2d,将 conv1/conv1_2 替换为 conv2d_1,将 conv2/conv2_1 替换为 conv2d_2,将 conv2/conv2_2 替换为 conv2d_3,将 conv3/conv3_1 替换为 conv2d_4,将 conv3/conv3_2 替换为 conv2d_5,将 conv3/conv3_3 替换为 conv2d_6,将 conv4/conv4_1 替换为 conv2d_7,将 conv4/conv4_2 替换为 conv2d_8,将 conv4/conv4_3 替换为 conv2d_9,将 conv5/conv5_1 替换为 conv2d_10,将 conv5/conv5_2 替换为 conv2d_11,将 conv5/conv5_3 替换为 conv2d_12。这段代码的作用是将变量名转换为新的变量名,以便在后续的操作中使用。
相关问题
saver = tf.train.Saver(max_to_keep=30)
`saver = tf.train.Saver(max_to_keep=30)` 这行代码是在TensorFlow中创建一个Saver对象,用于保存训练过程中的模型。`max_to_keep` 参数指定了最多要保留多少个之前的模型检查点。当其值设为30时,意味着训练过程中会保存最近的30个模型(按时间顺序)。
如果训练过程中你想限制模型的数量以节省磁盘空间,你可以调整这个参数。例如,如果你想只保留最新的模型(即删除旧版本),可以将`max_to_keep` 设置为1,如 `saver = tf.train.Saver(max_to_keep=1)`[^1]。
正确的保存模型示例包括在一个Session内循环训练,并在每个迭代步骤结束后保存当前状态,如下所示[^2]:
```python
with tf.Session() as sess:
saver = tf.train.Saver(max_to_keep=5) # 指定保存5个模型
for step in range(10):
init_checkpoint = 'model-%d.ckpt' % step
# 训练...
saver.save(sess, init_checkpoint)
```
每次迭代完成后,会覆盖最早保存的模型,直到达到`max_to_keep` 的数量限制。
import time import tensorflow.compat.v1 as tf tf.disable_v2_behavior() from tensorflow.examples.tutorials.mnist import input_data import mnist_inference import mnist_train tf.compat.v1.reset_default_graph() EVAL_INTERVAL_SECS = 10 def evaluate(mnist): with tf.Graph().as_default() as g: #定义输入与输出的格式 x = tf.compat.v1.placeholder(tf.float32, [None, mnist_inference.INPUT_NODE], name='x-input') y_ = tf.compat.v1.placeholder(tf.float32, [None, mnist_inference.OUTPUT_NODE], name='y-input') validate_feed = {x: mnist.validation.images, y_: mnist.validation.labels} #直接调用封装好的函数来计算前向传播的结果 y = mnist_inference.inference(x, None) #计算正确率 correcgt_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1)) accuracy = tf.reduce_mean(tf.cast(correcgt_prediction, tf.float32)) #通过变量重命名的方式加载模型 variable_averages = tf.train.ExponentialMovingAverage(0.99) variable_to_restore = variable_averages.variables_to_restore() saver = tf.train.Saver(variable_to_restore) #每隔10秒调用一次计算正确率的过程以检测训练过程中正确率的变化 while True: with tf.compat.v1.Session() as sess: ckpt = tf.train.get_checkpoint_state(minist_train.MODEL_SAVE_PATH) if ckpt and ckpt.model_checkpoint_path: #load the model saver.restore(sess, ckpt.model_checkpoint_path) global_step = ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1] accuracy_score = sess.run(accuracy, feed_dict=validate_feed) print("After %s training steps, validation accuracy = %g" % (global_step, accuracy_score)) else: print('No checkpoint file found') return time.sleep(EVAL_INTERVAL_SECS) def main(argv=None): mnist = input_data.read_data_sets(r"D:\Anaconda123\Lib\site-packages\tensorboard\mnist", one_hot=True) evaluate(mnist) if __name__ == '__main__': tf.compat.v1.app.run()对代码进行改进
以下是对代码的改进建议:
1. 在代码开头添加注释,简要说明代码功能和使用方法。
2. 将导入模块的语句放在代码开头。
3. 将模型保存路径和评估时间间隔定义为常量,并使用有意义的变量名。
4. 将计算正确率和加载模型的过程封装为函数。
5. 在主函数中调用评估函数。
改进后的代码如下:
```
# 该代码实现了使用已训练好的模型对 MNIST 数据集进行评估
import time
import tensorflow.compat.v1 as tf
from tensorflow.examples.tutorials.mnist import input_data
import mnist_inference
import mnist_train
# 定义常量
MODEL_SAVE_PATH = 'model/'
EVAL_INTERVAL_SECS = 10
def evaluate(mnist):
"""
计算模型在验证集上的正确率
"""
with tf.Graph().as_default() as g:
# 定义输入和输出格式
x = tf.placeholder(tf.float32, [None, mnist_inference.INPUT_NODE], name='x-input')
y_ = tf.placeholder(tf.float32, [None, mnist_inference.OUTPUT_NODE], name='y-input')
# 直接调用封装好的函数计算前向传播结果
y = mnist_inference.inference(x, None)
# 计算正确率
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
# 加载模型
variable_averages = tf.train.ExponentialMovingAverage(mnist_train.MOVING_AVERAGE_DECAY)
variables_to_restore = variable_averages.variables_to_restore()
saver = tf.train.Saver(variables_to_restore)
# 在验证集上计算正确率
with tf.Session() as sess:
ckpt = tf.train.get_checkpoint_state(MODEL_SAVE_PATH)
if ckpt and ckpt.model_checkpoint_path:
saver.restore(sess, ckpt.model_checkpoint_path)
global_step = ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1]
accuracy_score = sess.run(accuracy, feed_dict={x: mnist.validation.images, y_: mnist.validation.labels})
print("After %s training steps, validation accuracy = %g" % (global_step, accuracy_score))
else:
print('No checkpoint file found')
def main(argv=None):
# 读取数据集
mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
# 每隔一定时间评估模型在验证集上的正确率
while True:
evaluate(mnist)
time.sleep(EVAL_INTERVAL_SECS)
if __name__ == '__main__':
tf.app.run()
```
阅读全文