def __init__(self): self.meta_path = facenet_args.meta_path self.ckpt_path = facenet_args.ckpt_path self.sess = tf.Session() self.__build_net()
时间: 2023-06-27 11:03:14 浏览: 121
这段代码是定义了一个类的初始化方法(constructor),其中包含了几个属性的赋值和一个私有方法的调用。具体来说:
- `self.meta_path` 和 `self.ckpt_path` 分别赋值为 `facenet_args.meta_path` 和 `facenet_args.ckpt_path`,这两个变量都是外部传入的路径参数。
- `self.sess` 被赋值为一个新建的 `tf.Session()`,这个 session 将在后面的模型加载和预测过程中被用到。
- 最后调用了一个私有方法 `__build_net()`,这个方法用于构建模型,具体实现可以参考代码中的实现。
相关问题
self.dataset = load_data(args.data_path)
您的第一个问题是关于加载数据集的代码。根据您提供的代码片段,它使用了一个名为`load_data`的函数来加载数据集,并将加载得到的数据集赋值给`self.dataset`变量。
这种加载数据集的方式很常见,但具体的实现细节可能会根据您的代码和数据集的格式而有所不同。`load_data`函数可能会从指定的路径(`args.data_path`)读取数据,并进行一些预处理操作,最终返回一个包含数据集的对象。
请注意,由于我是一个AI模型,我无法访问您的代码或数据集,并不能提供更详细的信息。如果您需要更具体的帮助,请提供更多相关的上下文或代码细节。
def __init__(self, args): self.args = args self.filename_list = self.load_file_name_list(os.path.join(args.dataset_path, 'train_path_list.txt')) self.cut_size = args.test_cut_size self.cut_stride = args.test_cut_stride
这段代码定义了一个类的初始化方法,它有两个参数:args 和 self。其中,self 表示类的实例本身,args 是一个命名空间,其中存储了类的各种参数和设置。
在初始化方法中,首先将 args 存储为类的一个属性,然后通过 load_file_name_list() 方法加载文件名列表。这个方法会读取一个名为 train_path_list.txt 的文件,并将其中的路径列表存储到 filename_list 属性中。最后,将测试切片大小(cut_size)和测试切片步长(cut_stride)存储为类的属性。
需要注意的是,这段代码属于一个类的定义,它并不会被直接执行。如果要使用这个类,需要先实例化它,然后才能调用其中的方法和属性。