背包问题。 给定n种物品和一个背包。物品i的重量是Wi,其价值为Vi,背包的容量为C。应如何选择装入背包的物品,使得装入背包中物品的总价值最大?使用贪心算法的算法思想
时间: 2023-10-03 13:06:19 浏览: 80
背包问题是一个经典的动态规划问题,而贪心算法并不一定能够得到最优解。但是,对于一些特殊情况,贪心算法仍然可以得到最优解。
对于背包问题,可以使用贪心算法的思想进行求解。具体来说,可以按照物品的单位重量价值进行排序,然后依次将单位重量价值高的物品放入背包中,直到背包装满为止。
具体实现步骤如下:
1. 计算每种物品的单位重量价值 Vi/Wi。
2. 按照单位重量价值从大到小排序。
3. 依次将物品放入背包中,直到背包装满为止。
这个算法的正确性是可以证明的,因为每次放入单位重量价值最高的物品,会使得背包中的总价值最大。但是,这个算法并不一定能够得到最优解,因为有些情况下,放入单位重量价值最高的物品并不一定是最优的选择。
相关问题
背包问题。 给定n种物品和一个背包。物品i的重量是Wi,其价值为Vi,背包的容量为C。应如何选择装入背包的物品,使得装入背包中物品的总价值最大?使用贪心算法实现程序代码C语言
贪心算法的思路是每次选取当前最优的物品放入背包中,直到背包无法再放入物品为止。在本题中,我们可以按照单位重量价值(即价值除以重量)从大到小排序,然后依次选取物品放入背包中,直到背包无法再放入物品或者所有物品都已经放入为止。
以下是C语言实现代码:
```c
#include <stdio.h>
#include <stdlib.h>
#define MAX_N 100
// 物品结构体
struct Item {
int weight; // 物品重量
int value; // 物品价值
double ratio; // 单位重量价值
};
// 比较函数,用于排序
int cmp(const void* a, const void* b) {
struct Item* item1 = (struct Item*)a;
struct Item* item2 = (struct Item*)b;
return (item2->ratio - item1->ratio > 0) ? 1 : -1;
}
// 贪心算法解决背包问题
double knapsack(int n, int c, struct Item items[]) {
double total_value = 0; // 装入背包中的物品的总价值
int i;
qsort(items, n, sizeof(struct Item), cmp); // 按照单位重量价值排序
for (i = 0; i < n; i++) {
if (items[i].weight <= c) {
total_value += items[i].value;
c -= items[i].weight;
} else {
total_value += c * items[i].ratio; // 取部分物品
break;
}
}
return total_value;
}
int main() {
int n, c;
struct Item items[MAX_N];
printf("请输入物品数量:");
scanf("%d", &n);
printf("请输入背包容量:");
scanf("%d", &c);
printf("请输入每个物品的重量和价值:\n");
int i;
for (i = 0; i < n; i++) {
scanf("%d %d", &items[i].weight, &items[i].value);
items[i].ratio = (double)items[i].value / items[i].weight;
}
double total_value = knapsack(n, c, items);
printf("可装入背包中物品的最大总价值为:%.2lf\n", total_value);
return 0;
}
```
注意,本程序中使用了qsort函数对物品进行排序,需要包含stdlib.h头文件。
背包问题。 给定n种物品和一个背包。物品i的重量是Wi,其价值为Vi,背包的容量为C。应如何选择装入背包的物品,使得装入背包中物品的总价值最大?与0-1背包问题类似,所不同的是在选择物品i装入背包时,可以选择物品i
这是一个经典的背包问题,可以使用动态规划来解决。
设f(i,j)表示前i个物品放入容量为j的背包中所得到的最大价值。
则有状态转移方程:
f(i,j) = max{f(i-1,j), f(i-1,j-wi)+vi},其中wi表示第i个物品的重量,vi表示第i个物品的价值。
其中f(i-1,j)表示不选择第i个物品,f(i-1,j-wi)+vi表示选择第i个物品。
最终的结果就是f(n,C)。
具体的实现可以使用二维数组来存储状态值,先初始化f(0,j)和f(i,0)都为0,然后依次计算f(i,j)的值。最后返回f(n,C)即可。时间复杂度为O(nC)。
阅读全文