DDPG的经验回放机制怎么改进成有权重控制的,用tensorflow2.0写
时间: 2024-04-11 14:27:40 浏览: 300
要改进DDPG的经验回放机制,使其具有权重控制,可以使用优先经验回放(Prioritized Experience Replay)算法。下面是一个使用TensorFlow 2.0实现的示例代码:
首先,导入所需的库:
```python
import numpy as np
import tensorflow as tf
from collections import deque
```
定义一个经验回放缓存类,用于存储和采样经验数据:
```python
class ReplayBuffer:
def __init__(self, buffer_size):
self.buffer_size = buffer_size
self.buffer = deque(maxlen=buffer_size)
self.priorities = deque(maxlen=buffer_size)
def add(self, state, action, reward, next_state, done):
experience = (state, action, reward, next_state, done)
self.buffer.append(experience)
self.priorities.append(max(self.priorities, default=1))
def sample(self, batch_size, priority_scale):
priorities = np.array(self.priorities)
probabilities = priorities ** priority_scale / np.sum(priorities ** priority_scale)
indices = np.random.choice(len(self.buffer), batch_size, p=probabilities)
samples = [self.buffer[idx] for idx in indices]
total = len(self.buffer)
weights = (total * probabilities[indices]) ** -beta
states = np.array([sample[0] for sample in samples])
actions = np.array([sample[1] for sample in samples])
rewards = np.array([sample[2] for sample in samples])
next_states = np.array([sample[3] for sample in samples])
dones = np.array([sample[4] for sample in samples])
return states, actions, rewards, next_states, dones, indices, weights
def update_priorities(self, indices, errors, epsilon=1e-6):
priorities = np.abs(errors) + epsilon
for i, idx in enumerate(indices):
self.priorities[idx] = priorities[i]
```
接下来,定义一个DDPG代理类,包含经验回放缓存的实例:
```python
class DDPGAgent:
def __init__(self, state_dim, action_dim, buffer_size, priority_scale):
self.state_dim = state_dim
self.action_dim = action_dim
self.buffer = ReplayBuffer(buffer_size)
self.priority_scale = priority_scale
# 其他DDPG代理的初始化代码...
def add_experience(self, state, action, reward, next_state, done):
self.buffer.add(state, action, reward, next_state, done)
def train(self, batch_size):
states, actions, rewards, next_states, dones, indices, weights = self.buffer.sample(batch_size, self.priority_scale)
# 计算TD误差并执行梯度下降更新
td_errors = # 计算TD误差的代码
self.buffer.update_priorities(indices, td_errors)
# 其他DDPG训练的代码...
```
在训练过程中,您可以使用`add_experience`方法将经验添加到缓存中。然后,通过调用`train`方法来执行DDPG的训练,其中会从经验回放缓存中采样一批经验数据,并根据TD误差更新经验的优先级。
请注意,上述代码中的TD误差的计算部分需要根据您的具体问题和DDPG网络的架构进行适当修改。
希望这个示例代码能够帮助您改进DDPG的经验回放机制并添加权重控制!
阅读全文