optics聚类算法 python
时间: 2023-10-12 10:21:23 浏览: 138
Optics 聚类算法是一种基于密度的聚类算法,它可以处理任意形状的簇,并且不需要预设簇的数量。在 Python 中,可以使用 Scikit-learn 库来实现 Optics 聚类算法。具体实现步骤包括数据预处理、构建 Optics 对象、拟合数据和可视化聚类结果等。以下是一个简单的示例代码:
```python
from sklearn.cluster import OPTICS
# 准备数据
X = [[2, 4], [2, 5], [4, 6], [4, 7], [4, 8], [6, 9], [6, 10], [7, 8]]
# 构建 Optics 对象
optics_model = OPTICS(min_samples=2, xi=0.05)
# 拟合数据
optics_model.fit(X)
# 可视化聚类结果
import matplotlib.pyplot as plt
labels = optics_model.labels_
reachability = optics_model.reachability_
plt.figure(figsize=(10, 7))
plt.title('Optics Clustering')
plt.scatter(X[:,0], X[:,1], c=labels, cmap='viridis')
plt.show()
```
该示例代码使用了一个简单的二维数据集,构建 Optics 对象时设置了最小样本数为 2,$\xi$ 参数为 0.05。最后,可视化聚类结果并展示给用户。
相关问题
optics聚类算法python代码
好的,以下是一个简单的Python实现的optics聚类算法代码:
```python
import numpy as np
from sklearn.neighbors import NearestNeighbors
class OPTICS:
def __init__(self, eps, min_samples):
self.eps = eps
self.min_samples = min_samples
def fit(self, X):
self.X = X
self.n_samples = X.shape[0]
self.visited_ = np.zeros(self.n_samples, dtype=bool)
self.ordering_ = []
self.core_distances_ = np.zeros(self.n_samples)
self.reachability_distances_ = np.ones(self.n_samples) * np.inf
self.process()
def process(self):
self.tree_ = NearestNeighbors(radius=self.eps, algorithm='ball_tree').fit(self.X)
for point_idx in range(self.n_samples):
if not self.visited_[point_idx]:
self.visited_[point_idx] = True
self.ordering_.append(point_idx)
neighbors_idx = self.tree_.radius_neighbors([self.X[point_idx]], return_distance=False)[0]
n_neighbors = len(neighbors_idx)
if n_neighbors >= self.min_samples:
self.core_distances_[point_idx] = np.max(self.tree_.kneighbors([self.X[point_idx]], n_neighbors=self.min_samples)[0])
self.update(neighbors_idx, point_idx)
self.ordering_ = np.array(self.ordering_)
self.cluster_ordering_ = np.argsort(self.reachability_distances_)
self.reachability_distances_[self.reachability_distances_ == np.inf] = -1
def update(self, neighbors_idx, point_idx):
core_dist = self.core_distances_[point_idx]
for neighbor in neighbors_idx:
if not self.visited_[neighbor]:
new_reach_dist = max(core_dist, np.linalg.norm(self.X[point_idx] - self.X[neighbor]))
if np.isinf(self.reachability_distances_[neighbor]):
self.reachability_distances_[neighbor] = new_reach_dist
else:
self.reachability_distances_[neighbor] = min(new_reach_dist, self.reachability_distances_[neighbor])
def extract_clusters(self):
clusters = []
idx = 0
while idx < self.n_samples:
if self.reachability_distances_[self.cluster_ordering_[idx]] == -1:
idx += 1
continue
cluster = [self.cluster_ordering_[idx]]
while True:
idx += 1
if idx == self.n_samples:
break
if self.reachability_distances_[self.cluster_ordering_[idx]] == -1:
continue
if self.reachability_distances_[self.cluster_ordering_[idx]] > self.eps:
break
cluster.append(self.cluster_ordering_[idx])
clusters.append(cluster)
return clusters
```
OPTICS聚类算法python代码
OPTICS聚类算法的Python代码如下所示:
```python
from numpy import unique
from numpy import where
from sklearn.datasets import make_classification
from sklearn.cluster import OPTICS
from matplotlib import pyplot
# 定义数据集
X, _ = make_classification(n_samples=1000, n_features=2, n_informative=2, n_redundant=0, n_clusters_per_class=1, random_state=4)
# 定义模型
model = OPTICS(eps=0.8, min_samples=10)
# 模型拟合与聚类预测
yhat = model.fit_predict(X)
# 检索唯一群集
clusters = unique(yhat)
# 为每个群集的样本创建散点图
f<span class="em">1</span><span class="em">2</span><span class="em">3</span>
#### 引用[.reference_title]
- *1* *2* *3* [十种常用聚类算法(python完整代码演示)](https://blog.csdn.net/lk_mm_love/article/details/127040710)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 100%"]
[ .reference_list ]
阅读全文