# K近邻算法 from sklearn import neighbors # 导包 from sklearn.model_selection import train_test_split import pandas as pd data = pd.read_csv("data/预处理.csv.", header=None); X = data.iloc[:, 1:14] # 0到124行;1-14列,训练集 Y = data.iloc[:, 0] Xtrain, Xtest, Ytrain, Ytest = train_test_split(X, Y, test_size=0.3) # 测试集占30% clf = neighbors.KNeighborsClassifier(n_neighbors=3, weights='distance') # 实例化对象 训练模型 clf.fit(Xtrain, Ytrain) # 拟合数据 # predict = clf.predict(Ytrain) print("准确率为:", clf.score(Xtest, Ytest))

时间: 2024-04-11 09:29:23 浏览: 12
这段代码使用了scikit-learn库中的K近邻算法来进行分类任务。下面是对代码的解释: 1. 首先,导入了需要的库:`neighbors`模块用于K近邻分类器,`train_test_split`函数用于数据集的划分,以及`pandas`库用于数据处理。 2. 接下来,使用`pd.read_csv`函数从CSV文件中读取数据,并将其存储在名为`data`的DataFrame对象中。 3. 通过`data.iloc`方法,从`data`中提取特征变量`X`(列1-14)和目标变量`Y`(第0列)。 4. 使用`train_test_split`函数将数据集划分为训练集和测试集,其中测试集占总数据的30%。划分后的数据分别存储在`Xtrain`、`Xtest`、`Ytrain`和`Ytest`中。 5. 创建一个K近邻分类器对象,并使用`n_neighbors=3`设置最近邻居的数量,`weights='distance'`设置权重计算方式为距离加权。 6. 使用`clf.fit`方法拟合训练数据,训练模型。 7. 通过调用`clf.score`方法计算在测试集上的准确率,并使用`print`语句打印结果。 注意:代码中的`predict`变量被注释掉了,因此并没有使用。如果你需要获取预测结果,可以将其取消注释,并将数据集改为`Xtrain`。
相关问题

# K近邻算法 from sklearn import neighbors # 导包 from sklearn.model_selection import train_test_split import pandas as pd data = pd.read_csv("data/预处理.csv.", header=None); X = data.iloc[:, 1:14] # 0到124行;1-14列,训练集 Y = data.iloc[:, 0] Xtrain, Xtest, Ytrain, Ytest = train_test_split(X, Y, test_size=0.3) # 测试集占30% clf = neighbors.KNeighborsClassifier(n_neighbors=3, weights='distance') # 实例化对象 训练模型 clf.fit(Xtrain, Ytrain) # 拟合数据 # predict = clf.predict(Ytrain) print("准确率为:", clf.score(Xtest, Ytest)) 什么意思,怎么使用,翻译每一行代码的意思

这段代码使用了K近邻算法来进行分类任务。下面是对每行代码的意思和使用方法的解释: 1. 导入所需的库(sklearn中的neighbors模块和train_test_split函数,以及pandas库)。 2. 从CSV文件中读取数据并存储在名为"data"的DataFrame中。该文件中没有标题行,所以设置header参数为None。 3. 从数据中选择特征列(第1到第14列)作为训练集X,选择第0列作为目标变量Y。 4. 使用train_test_split函数将数据集划分为训练集和测试集。其中test_size参数设置为0.3表示测试集占总数据集的30%。 5. 创建一个KNeighborsClassifier对象(K近邻分类器)。在这里,n_neighbors参数设置为3表示使用3个最近邻居进行分类,weights参数设置为'distance'表示考虑邻居之间的距离权重。 6. 使用fit方法拟合训练数据,即训练模型。 7. 使用score方法计算模型在测试集上的准确率。 8. 最后一行代码打印出准确率。 这段代码实现了一个简单的K近邻分类器,并输出了在测试集上的准确率。

import pandas as pd from sklearn.model_selection import train_test_split from sklearn.neighbors import KNeighborsClassifier from sklearn.metrics import accuracy_score # 导入数据集 data = pd.read_csv("1.csv") # 分割特征和标签 X = data.iloc[:, :-1] y = data.iloc[:, -1] # 将数据集分为训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42) # 创建KNN分类器 knn = KNeighborsClassifier(n_neighbors=3) # 训练模型 knn.fit(X_train, y_train) # 预测测试集 y_pred = knn.predict(X_test) # 计算准确率 accuracy = accuracy_score(y_test, y_pred) print("Accuracy:", accuracy) # 假设有一个新的样本 [5.1, 3.5, 1.4] new_sample = [[1, 27, 19]] # 使用训练好的KNN分类器进行预测 pred = knn.predict(new_sample) # 输出预测结果 print("预测结果:", pred)写一个和这个类似的代码

好的,这里是一个类似的代码,使用Iris数据集进行KNN分类器的训练和预测。与您提供的代码不同的是,这个代码使用了Iris数据集的原始数据而不是从CSV文件中读取数据,并且使用了交叉验证来评估分类器的性能。 ```python from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split, cross_val_score from sklearn.neighbors import KNeighborsClassifier # 加载Iris数据集 iris = load_iris() X = iris.data y = iris.target # 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42) # 创建KNN分类器 knn = KNeighborsClassifier(n_neighbors=3) # 使用交叉验证评估分类器性能 scores = cross_val_score(knn, X_train, y_train, cv=5) # 训练模型 knn.fit(X_train, y_train) # 预测测试集 y_pred = knn.predict(X_test) # 计算准确率 accuracy = knn.score(X_test, y_test) print("Accuracy:", accuracy) # 假设有一个新的样本 [5.1, 3.5, 1.4, 0.2] new_sample = [[5.1, 3.5, 1.4, 0.2]] # 使用训练好的KNN分类器进行预测 pred = knn.predict(new_sample) # 输出预测结果 print("预测结果:", iris.target_names[pred]) ``` 该代码会输出KNN分类器在测试集上的准确率,并且会基于训练好的分类器对一个新的样本进行预测,并输出预测结果。

相关推荐

请给我修改后的这份代码,使它的模型评价高于0.6 import pandas as pd from sklearn.neighbors import KNeighborsClassifier from sklearn.preprocessing import LabelEncoder from sklearn.model_selection import train_test_split from sklearn.metrics import f1_score 读取训练集和测试集数据 data_hk = pd.read_csv("员工满意度_train.csv", engine='python') 填充缺失值 data_hk.fillna(0, inplace=True) data_hk = data_hk.drop(labels=['division'],axis=1) 将分类特征进行编码 encoder = LabelEncoder() data_hk['package'] = encoder.fit_transform(data_hk['package'].astype(str)) 划分训练集和验证集 X_train, X_test, y_train, y_test = train_test_split(data_hk.iloc[:, 0:-1], data_hk.iloc[:, -1], test_size=0.45, random_state=10) 模型训练 model = KNeighborsClassifier(n_neighbors=4) model.fit(X_train, y_train) 读取测试集数据 forecast_hk = pd.read_csv("员工满意度_test_nolabel.csv", engine='python') forecast_hk = forecast_hk.drop(labels=['division'],axis=1) forecast_hk.fillna(0, inplace=True) forecast_hk['package'] = encoder.transform(forecast_hk['package'].astype(str)) 在测试集上进行预测 y_predict = model.predict(forecast_hk) 将预测结果添加到测试集中 forecast_hk['salary'] = y_predict forecast_hk.to_csv("员工满意度_test_nolabel.csv", index=False) 在验证集上进行预测和评估 y_pred_test = model.predict(X_test) score = f1_score(y_test, y_pred_test, average='macro') print("模型评价(f1-score):", score)

import pandas as pd from sklearn.datasets import load_wine from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression from sklearn.feature_selection import SelectKBest, f_classif from sklearn.decomposition import PCA from sklearn.metrics import accuracy_score, classification_report from sklearn.tree import DecisionTreeClassifier from sklearn.metrics import accuracy_score from sklearn.ensemble import RandomForestClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.naive_bayes import GaussianNB from sklearn.linear_model import LogisticRegression from sklearn.svm import SVC data = load_wine() # 导入数据集 X = pd.DataFrame(data.data, columns=data.feature_names) y = pd.Series(data.target) # 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0) # 构建分类模型 model = LogisticRegression() model.fit(X_train, y_train) # 预测测试集结果 y_pred = model.predict(X_test) #评估模型性能 accuracy = accuracy_score(y_test, y_pred) report = classification_report(y_test, y_pred) print('准确率:', accuracy) # 特征选择 selector = SelectKBest(f_classif, k=6) X_new = selector.fit_transform(X, y) print('所选特征:', selector.get_support()) # 模型降维 pca = PCA(n_components=2) X_new = pca.fit_transform(X_new) # 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X_new, y, test_size=0.2, random_state=0) def Sf(model,X_train, X_test, y_train, y_test,modelname): mode = model() mode.fit(X_train, y_train) y_pred = mode.predict(X_test) accuracy = accuracy_score(y_test, y_pred) print(modelname, accuracy) importance = mode.feature_importances_ print(importance) def Sf1(model,X_train, X_test, y_train, y_test,modelname): mode = model() mode.fit(X_train, y_train) y_pred = mode.predict(X_test) accuracy = accuracy_score(y_test, y_pred) print(modelname, accuracy) modelname='支持向量机' Sf1(SVC,X_train, X_test, y_train, y_test,modelname) modelname='逻辑回归' Sf1(LogisticRegression,X_train, X_test, y_train, y_test,modelname) modelname='高斯朴素贝叶斯算法训练分类器' Sf1(GaussianNB,X_train, X_test, y_train, y_test,modelname) modelname='K近邻分类' Sf1(KNeighborsClassifier,X_train, X_test, y_train, y_test,modelname) modelname='决策树分类' Sf(DecisionTreeClassifier,X_train, X_test, y_train, y_test,modelname) modelname='随机森林分类' Sf(RandomForestClassifier,X_train, X_test, y_train, y_test,modelname)加一个画图展示

import numpy as np import pandas as pd from sklearn.model_selection import train_test_split, GridSearchCV from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score from sklearn.metrics import confusion_matrix import matplotlib.pyplot as plt from termcolor import colored as cl import itertools from sklearn.preprocessing import StandardScaler from sklearn.tree import DecisionTreeClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.linear_model import LogisticRegression from sklearn.svm import SVC from sklearn.ensemble import RandomForestClassifier from xgboost import XGBClassifier from sklearn.neural_network import MLPClassifier from sklearn.ensemble import VotingClassifier # 定义模型评估函数 def evaluate_model(y_true, y_pred): accuracy = accuracy_score(y_true, y_pred) precision = precision_score(y_true, y_pred, pos_label='Good') recall = recall_score(y_true, y_pred, pos_label='Good') f1 = f1_score(y_true, y_pred, pos_label='Good') print("准确率:", accuracy) print("精确率:", precision) print("召回率:", recall) print("F1 分数:", f1) # 读取数据集 data = pd.read_csv('F:\数据\大学\专业课\模式识别\大作业\数据集1\data clean Terklasifikasi baru 22 juli 2015 all.csv', skiprows=16, header=None) # 检查数据集 print(data.head()) # 划分特征向量和标签 X = data.iloc[:, :-1] y = data.iloc[:, -1] # 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 6. XGBoost xgb = XGBClassifier(max_depth=4) y_test = np.array(y_test, dtype=int) xgb.fit(X_train, y_train) xgb_pred = xgb.predict(X_test) print("\nXGBoost评估结果:") evaluate_model(y_test, xgb_pred)

import pandas as pd from pandas import Series,DataFrame import numpy as np df=pd.read_table('D:adult.txt',sep=',') df.head() # 特征数据 data = df.iloc[:,:-1].copy() data.head() # 标签数据 target = df[["salary"]].copy() target.head() # 查看总共有多少个职业 ws = data.workclass.unique() ws # 定义转化函数 def convert_ws(item): # np.argwhere函数会返回,相应职业对应的索引 return np.argwhere(ws==item)[0,0] # 将职业转化为职业列表中索引值 data.workclass = data.workclass.map(convert_ws) # 查看职业转化后的数据 data.head() # 需要进行量化的属性 cols = ['education',"marital_status","occupation","relationship","race","sex","native_country"] # 使用遍历的方式对各列属性进行量化 def convert_item(item): return np.argwhere(uni == item)[0,0] for col in cols: uni = data[col].unique() data[col] = data[col].map(convert_item) # 查看对所有列进行量化后的数据 data.head() from sklearn.neighbors import KNeighborsClassifier from sklearn.model_selection import train_test_split # 创建模型 knn = KNeighborsClassifier(n_neighbors=8) # 划分训练集与测试集 x_train,x_test,y_train,y_test = train_test_split(data,target,test_size=0.01) # 对模型进行训练 knn.fit(x_train,y_train) # 使用测试集查看模型的准确度 knn.score(x_test,y_test) # 把所有的数据归一化 # 创建归一化函数 def func(x): return (x-min(x))/(max(x)-min(x)) # 对特征数据进行归一化处理 data[data.columns] = data[data.columns].transform(func) data.head() # 划分训练集与测试集 x_train,x_test,y_train,y_test = train_test_split(data,target,test_size=0.01) # 创建模型 knn = KNeighborsClassifier(n_neighbors=8) # 训练模型 knn.fit(x_train,y_train) # 使用测试集查看模型的准确度 knn.score(x_test,y_test)

import streamlit as st import numpy as np import pandas as pd import pickle import matplotlib.pyplot as plt from sklearn import datasets from sklearn.model_selection import train_test_split from sklearn.decomposition import PCA from sklearn.svm import SVC from sklearn.neighbors import KNeighborsClassifier from sklearn.ensemble import RandomForestClassifier import streamlit_echarts as st_echarts from sklearn.metrics import accuracy_score,confusion_matrix,f1_score def pivot_bar(data): option = { "xAxis":{ "type":"category", "data":data.index.tolist() }, "legend":{}, "yAxis":{ "type":"value" }, "series":[ ] }; for i in data.columns: option["series"].append({"data":data[i].tolist(),"name":i,"type":"bar"}) return option st.markdown("mode pracitce") st.sidebar.markdown("mode pracitce") df=pd.read_csv(r"D:\课程数据\old.csv") st.table(df.head()) with st.form("form"): index_val = st.multiselect("choose index",df.columns,["Response"]) agg_fuc = st.selectbox("choose a way",[np.mean,len,np.sum]) submitted1 = st.form_submit_button("Submit") if submitted1: z=df.pivot_table(index=index_val,aggfunc = agg_fuc) st.table(z) st_echarts(pivot_bar(z)) df_copy = df.copy() df_copy.drop(axis=1,columns="Name",inplace=True) df_copy["Response"]=df_copy["Response"].map({"no":0,"yes":1}) df_copy=pd.get_dummies(df_copy,columns=["Gender","Area","Email","Mobile"]) st.table(df_copy.head()) y=df_copy["Response"].values x=df_copy.drop(axis=1,columns="Response").values X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.2) with st.form("my_form"): estimators0 = st.slider("estimators",0,100,10) max_depth0 = st.slider("max_depth",1,10,2) submitted = st.form_submit_button("Submit") if "model" not in st.session_state: st.session_state.model = RandomForestClassifier(n_estimators=estimators0,max_depth=max_depth0, random_state=1234) st.session_state.model.fit(X_train, y_train) y_pred = st.session_state.model.predict(X_test) st.table(confusion_matrix(y_test, y_pred)) st.write(f1_score(y_test, y_pred)) if st.button("save model"): pkl_filename = "D:\\pickle_model.pkl" with open(pkl_filename, 'wb') as file: pickle.dump(st.session_state.model, file) 会出什么错误

最新推荐

recommend-type

软考-考生常见操作说明-202405101400-纯图版.pdf

软考官网--2024常见操作说明:包括如何绘制网络图、UML图、表格等 模拟作答系统是计算机技术与软件专业技术资格(水平)考试的电子化考试系统界面、作答过程的仿真系统,为各级别、各资格涉及输入和页面显示的部分题型提供体验性练习。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

解释minorization-maximization (MM) algorithm,并给出matlab代码编写的例子

Minorization-maximization (MM) algorithm是一种常用的优化算法,用于求解非凸问题或含有约束的优化问题。该算法的基本思想是通过构造一个凸下界函数来逼近原问题,然后通过求解凸下界函数的最优解来逼近原问题的最优解。具体步骤如下: 1. 初始化参数 $\theta_0$,设 $k=0$; 2. 构造一个凸下界函数 $Q(\theta|\theta_k)$,使其满足 $Q(\theta_k|\theta_k)=f(\theta_k)$; 3. 求解 $Q(\theta|\theta_k)$ 的最优值 $\theta_{k+1}=\arg\min_\theta Q(
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

帮我实现在Androidstudio调用chapgpt并提供源码

首先,你需要运行一个ChitGPT的服务器,然后通过Android应用程序与该服务器进行通信。以下是一个简单的Android应用程序示例,可以与ChitGPT进行通信: 1. 首先,在Android Studio中创建一个新的项目,并添加以下依赖项: ``` implementation 'com.squareup.okhttp3:okhttp:4.9.0' implementation 'com.google.code.gson:gson:2.8.6' ``` 2. 创建一个新的Java类,用于与ChitGPT服务器通信。以下是一个简单的实现: ```java import com.
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。