if(not_assigned_detections.size()!=0) { for(int i=0;i<not_assigned_detections.size();i++) { CTrack* tr=new CTrack(detections[not_assigned_detections[i]],dt,Accel_noise_mag); tracks.push_back(tr); } }

时间: 2023-06-17 17:03:54 浏览: 101
ZIP

DSP_Assigned_Problems.zip_MATLAB dsp_practice

这段代码是一个目标跟踪算法中的一部分。首先,通过检测算法检测到一些目标,然后将这些目标与已经跟踪的目标进行匹配,从而确定哪些目标需要被更新跟踪,哪些目标是新的需要被跟踪的目标。 在这段代码中,如果存在未匹配的检测目标,则将其作为新的目标跟踪。对于每个未匹配的检测目标,创建一个新的跟踪器对象(CTrack),并将其添加到跟踪器列表(tracks)中。跟踪器对象包含目标的状态信息、跟踪器的ID、以及一些其他的属性。在后续的跟踪过程中,会使用这些信息来更新跟踪器的状态,以及确定哪些跟踪器需要被删除。 需要注意的是,这段代码只处理未匹配的检测目标,已经匹配的目标会被更新跟踪,而不会被处理。这是因为已经匹配的目标会被分配到对应的跟踪器对象中进行处理。
阅读全文

相关推荐

from scipy.sparse.linalg import eigsh, LinearOperator from scipy.sparse import isspmatrix, is_pydata_spmatrix class SVDRecommender: def init(self, k=50, ncv=None, tol=0, which='LM', v0=None, maxiter=None, return_singular_vectors=True, solver='arpack'): self.k = k self.ncv = ncv self.tol = tol self.which = which self.v0 = v0 self.maxiter = maxiter self.return_singular_vectors = return_singular_vectors self.solver = solver def svds(self, A): if self.which == 'LM': largest = True elif self.which == 'SM': largest = False else: raise ValueError("which must be either 'LM' or 'SM'.") if not (isinstance(A, LinearOperator) or isspmatrix(A) or is_pydata_spmatrix(A)): A = np.asarray(A) n, m = A.shape if self.k <= 0 or self.k >= min(n, m): raise ValueError("k must be between 1 and min(A.shape), k=%d" % self.k) if isinstance(A, LinearOperator): if n > m: X_dot = A.matvec X_matmat = A.matmat XH_dot = A.rmatvec XH_mat = A.rmatmat else: X_dot = A.rmatvec X_matmat = A.rmatmat XH_dot = A.matvec XH_mat = A.matmat dtype = getattr(A, 'dtype', None) if dtype is None: dtype = A.dot(np.zeros([m, 1])).dtype else: if n > m: X_dot = X_matmat = A.dot XH_dot = XH_mat = _herm(A).dot else: XH_dot = XH_mat = A.dot X_dot = X_matmat = _herm(A).dot def matvec_XH_X(x): return XH_dot(X_dot(x)) def matmat_XH_X(x): return XH_mat(X_matmat(x)) XH_X = LinearOperator(matvec=matvec_XH_X, dtype=A.dtype, matmat=matmat_XH_X, shape=(min(A.shape), min(A.shape))) #获得隐式定义的格拉米矩阵的低秩近似。 eigvals, eigvec = eigsh(XH_X, k=self.k, tol=self.tol ** 2, maxiter=self.maxiter, ncv=self.ncv, which=self.which, v0=self.v0) #格拉米矩阵有实非负特征值。 eigvals = np.maximum(eigvals.real, 0) #使用来自pinvh的小特征值的复数检测。 t = eigvec.dtype.char.lower() factor = {'f': 1E3, 'd': 1E6} cond = factor[t] * np.finfo(t).eps cutoff = cond * np.max(eigvals) #获得一个指示哪些本征对不是简并微小的掩码, #并为阈值奇异值创建一个重新排序数组。 above_cutoff = (eigvals > cutoff) nlarge = above_cutoff.sum() nsmall = self.k - nlarge slarge = np.sqrt(eigvals[above_cutoff]) s = np.zeros_like(eigvals) s[:nlarge] = slarge if not self.return_singular_vectors: return np.sort(s) if n > m: vlarge = eigvec[:, above_cutoff] ularge = X_matmat(vlarge) / slarge if self.return_singular_vectors != 'vh' else None vhlarge = _herm(vlarge) else: ularge = eigvec[:, above_cutoff] vhlarge = _herm(X_matmat(ularge) / slarge) if self.return_singular_vectors != 'u' else None u = _augmented_orthonormal_cols(ularge, nsmall) if ularge is not None else None vh = _augmented_orthonormal_rows(vhlarge, nsmall) if vhlarge is not None else None indexes_sorted = np.argsort(s) s = s[indexes_sorted] if u is not None: u = u[:, indexes_sorted] if vh is not None: vh = vh[indexes_sorted] return u, s, vh def _augmented_orthonormal_cols(U, n): if U.shape[0] <= n: return U Q, R = np.linalg.qr(U) return Q[:, :n] def _augmented_orthonormal_rows(V, n): if V.shape[1] <= n: return V Q, R = np.linalg.qr(V.T) return Q[:, :n].T def _herm(x): return np.conjugate(x.T)这段代码在largest = False处报错了,报错信息为:Local variable 'largest' is assigned to but never used (pyfLakes E)如何改正

这段代码 def generate_npc(): blueprint = world.get_blueprint_library().find(npc_blueprints[i]) color = random.choice(blueprint.get_attribute('color').recommended_values) blueprint.set_attribute('color', color) # if blueprint.has_attribute('driver_id'): # driver_id = random.choice(blueprint.get_attribute('driver_id').recommended_values) # blueprint.set_attribute('driver_id', driver_id) blueprint.set_attribute('role_name', 'autopilot') start_point =carla.Location(x=npc_startpoints[i][0], y=npc_startpoints[i][1], z=npc_startpoints[i][2]) end_point = carla.Location(x=npc_endpoints[i][0], y=npc_endpoints[i][1], z=npc_endpoints[i][2]) transform = carla.Transform(start_point, carla.Rotation(yaw=0)) #0和180分别代表绕Z轴的偏航角度。在 carla.Rotation() 中,参数 yaw 表示偏航角度,即车辆或物体相对于地图坐标系(东北天)的旋转角度,以度为单位。0度表示车辆或物体朝向东方,180度表示车辆或物体朝向西方。 target_location = carla.Transform(end_point, carla.Rotation(yaw=180)) # 创建目标Transform对象 # print('aaaaa') #--- NPC =world.spawn_actor(blueprint, transform) #已生成车辆 NPC.set_autopilot(True) NPC.apply_control(carla.VehicleControl(throttle=1.0, steer=0.0, brake=0.0, hand_brake=False, reverse=False, manual_gear_shift=False, gear=0)) # 设置Vehicle的位置和朝向 NPC.set_transform(target_location) return NPC global NPC NPC = generate_npc() global blueprint global transform def reset_npc(): NPC.destroy() NPC=generate_npc()报错 ^ SyntaxError: name 'NPC' is assigned to before global declaration

for (const auto& task : tasks) { //std::cout << "Task name: " << task.id << ", Completed: " << task.completed << ", Priority: " << task.priority << std::endl; } // 遍历任务列表,分配任务给可用的小车 for (auto& task : tasks) { if (task.completed == 0) { // 只分配未完成的任务 AGV* closest_agv = nullptr; int wait_time = 0; // 等待时间计数器 // 初始化为 nullptr while (closest_agv == nullptr && wait_time < 3) { // 最多等待 1 秒钟 // 查找可用的小车 for (auto& agv : agvs) { if (agv.getState()) { closest_agv = &agv; break; } } if (closest_agv == nullptr) { // 没有可用的小车,等待一段时间再查找 std::this_thread::sleep_for(std::chrono::seconds(1)); wait_time++; } } if (closest_agv != nullptr) { // 找到可用小车 // 找到最近的可用小车 int min_distance = INT_MAX; for (auto& agv : agvs) { if (agv.getState()) { int distance = abs(agv.getCurrentX()- task.start_x) + abs(agv.getCurrentY() - task.start_y); if (distance < min_distance) { min_distance = distance; closest_agv = &agv; } } } // 将任务分配给 AGV 对象的起点和终点坐标 closest_agv->setStartCoord(task.start_x, task.start_y); closest_agv->setEndCoord(task.end_x, task.end_y); closest_agv->setState(false); // 小车被占用 task.completed = 1; // 任务状态修改为进行中 std::cout << "agv_id" << closest_agv->getid() << "————" << "task_id"<<task.id << endl; } else { std::cout << "task_id-" << task.id << "No available AGV!" << endl; } } },修改爲黨沒有可用小車的時候直接退出

最新推荐

recommend-type

基于java的房地产销售管理系统的开题报告.docx

基于java的房地产销售管理系统的开题报告
recommend-type

小程序 SKU 组件.zip

小程序 SKU 组件小程序 SKU 组件项目依赖了 Vant Weapp 的 Popup、Stepper 等组件和 miniprogram-computed 实现小程序 computed 计算属性代码参考自 Vant 的 SKU 组件源码查看效果运行克隆仓库,导入到微信开发者工具安装依赖npm i开发者工具中的菜单栏工具 -> 构建 npm代码示例<sku show="{{ showSku }}" sku-tree="{{ skuTree }}" sku-list="{{ skuList }}" picture="{{ skuPicture }}" price="{{ skuPrice }}" stock="{{ skuStock }}" bind:close="onCloseSku" bind:add-cart="onSkuAddCart" bind:buy="onSkuBuy"/>Page({ data: { showSku: true, skuTree: [ // 数据结构见
recommend-type

Python中快速友好的MessagePack序列化库msgspec

资源摘要信息:"msgspec是一个针对Python语言的高效且用户友好的MessagePack序列化库。MessagePack是一种快速的二进制序列化格式,它旨在将结构化数据序列化成二进制格式,这样可以比JSON等文本格式更快且更小。msgspec库充分利用了Python的类型提示(type hints),它支持直接从Python类定义中生成序列化和反序列化的模式。对于开发者来说,这意味着使用msgspec时,可以减少手动编码序列化逻辑的工作量,同时保持代码的清晰和易于维护。 msgspec支持Python 3.8及以上版本,能够处理Python原生类型(如int、float、str和bool)以及更复杂的数据结构,如字典、列表、元组和用户定义的类。它还能处理可选字段和默认值,这在很多场景中都非常有用,尤其是当消息格式可能会随着时间发生变化时。 在msgspec中,开发者可以通过定义类来描述数据结构,并通过类继承自`msgspec.Struct`来实现。这样,类的属性就可以直接映射到消息的字段。在序列化时,对象会被转换为MessagePack格式的字节序列;在反序列化时,字节序列可以被转换回原始对象。除了基本的序列化和反序列化,msgspec还支持运行时消息验证,即可以在反序列化时检查消息是否符合预定义的模式。 msgspec的另一个重要特性是它能够处理空集合。例如,上面的例子中`User`类有一个名为`groups`的属性,它的默认值是一个空列表。这种能力意味着开发者不需要为集合中的每个字段编写额外的逻辑,以处理集合为空的情况。 msgspec的使用非常简单直观。例如,创建一个`User`对象并序列化它的代码片段显示了如何定义一个用户类,实例化该类,并将实例序列化为MessagePack格式。这种简洁性是msgspec库的一个主要优势,它减少了代码的复杂性,同时提供了高性能的序列化能力。 msgspec的设计哲学强调了性能和易用性的平衡。它利用了Python的类型提示来简化模式定义和验证的复杂性,同时提供了优化的内部实现来确保快速的序列化和反序列化过程。这种设计使得msgspec非常适合于那些需要高效、类型安全的消息处理的场景,比如网络通信、数据存储以及服务之间的轻量级消息传递。 总的来说,msgspec为Python开发者提供了一个强大的工具集,用于处理高性能的序列化和反序列化任务,特别是当涉及到复杂的对象和结构时。通过利用类型提示和用户定义的模式,msgspec能够简化代码并提高开发效率,同时通过运行时验证确保了数据的正确性。"
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

STM32 HAL库函数手册精读:最佳实践与案例分析

![STM32 HAL库函数手册精读:最佳实践与案例分析](https://khuenguyencreator.com/wp-content/uploads/2020/07/bai11.jpg) 参考资源链接:[STM32CubeMX与STM32HAL库开发者指南](https://wenku.csdn.net/doc/6401ab9dcce7214c316e8df8?spm=1055.2635.3001.10343) # 1. STM32与HAL库概述 ## 1.1 STM32与HAL库的初识 STM32是一系列广泛使用的ARM Cortex-M微控制器,以其高性能、低功耗、丰富的外设接
recommend-type

如何利用FineReport提供的预览模式来优化报表设计,并确保最终用户获得最佳的交互体验?

针对FineReport预览模式的应用,这本《2020 FCRA报表工程师考试题库与答案详解》详细解读了不同预览模式的使用方法和场景,对于优化报表设计尤为关键。首先,设计报表时,建议利用FineReport的分页预览模式来检查报表的布局和排版是否准确,因为分页预览可以模拟报表在打印时的页面效果。其次,通过填报预览模式,可以帮助开发者验证用户交互和数据收集的准确性,这对于填报类型报表尤为重要。数据分析预览模式则适合于数据可视化报表,可以在这个模式下调整数据展示效果和交互设计,确保数据的易读性和分析的准确性。表单预览模式则更多关注于表单的逻辑和用户体验,可以用于检查表单的流程是否合理,以及数据录入
recommend-type

大学生社团管理系统设计与实现

资源摘要信息:"基于ssm+vue的大学生社团管理系统.zip" 该系统是基于Java语言开发的,使用了ssm框架和vue前端框架,主要面向大学生社团进行管理和运营,具备了丰富的功能和良好的用户体验。 首先,ssm框架是Spring、SpringMVC和MyBatis三个框架的整合,其中Spring是一个全面的企业级框架,可以处理企业的业务逻辑,实现对象的依赖注入和事务管理。SpringMVC是基于Servlet API的MVC框架,可以分离视图和模型,简化Web开发。MyBatis是一个支持定制化SQL、存储过程以及高级映射的持久层框架。 SpringBoot是一种全新的构建和部署应用程序的方式,通过使用SpringBoot,可以简化Spring应用的初始搭建以及开发过程。它使用了特定的方式来进行配置,从而使开发人员不再需要定义样板化的配置。 Vue.js是一个用于创建用户界面的渐进式JavaScript框架,它的核心库只关注视图层,易于上手,同时它的生态系统也十分丰富,提供了大量的工具和库。 系统主要功能包括社团信息管理、社团活动管理、社团成员管理、社团财务管理等。社团信息管理可以查看和编辑社团的基本信息,如社团名称、社团简介等;社团活动管理可以查看和编辑社团的活动信息,如活动时间、活动地点等;社团成员管理可以查看和编辑社团成员的信息,如成员姓名、成员角色等;社团财务管理可以查看和编辑社团的财务信息,如收入、支出等。 此外,该系统还可以通过微信小程序进行访问,微信小程序是一种不需要下载安装即可使用的应用,它实现了应用“触手可及”的梦想,用户扫一扫或者搜一下即可打开应用。同时,它也实现了应用“用完即走”的理念,用户不用关心是否安装太多应用的问题。应用将无处不在,随时可用,但又无需安装卸载。 总的来说,基于ssm+vue的大学生社团管理系统是一款功能丰富、操作简便、使用方便的社团管理工具,非常适合大学生社团的日常管理和运营。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

STM32 HAL库深度解析:新手到高手的进阶之路

![STM32 HAL库深度解析:新手到高手的进阶之路](https://img-blog.csdnimg.cn/20210526014326901.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L2xjemRr,size_16,color_FFFFFF,t_70) 参考资源链接:[STM32CubeMX与STM32HAL库开发者指南](https://wenku.csdn.net/doc/6401ab9dcce7214c316e8df
recommend-type

如何使用pyCUDA库在GPU上进行快速傅里叶变换(FFT)以加速线性代数运算?请提供具体的代码实现。

当你希望利用GPU的并行计算能力来加速线性代数运算,特别是快速傅里叶变换(FFT)时,pyCUDA是一个非常强大的工具。它允许开发者通过Python语言来编写CUDA代码,执行复杂的GPU计算任务。通过学习《Python与pyCUDA:GPU并行计算入门与实战》这一资料,你可以掌握如何使用pyCUDA进行GPU编程和加速计算。 参考资源链接:[Python与pyCUDA:GPU并行计算入门与实战](https://wenku.csdn.net/doc/6401ac00cce7214c316ea46b?spm=1055.2569.3001.10343) 具体到FFT的实现,你需要首先确保已经