Astar算法的伪代码
时间: 2023-10-12 09:54:34 浏览: 156
当然,下面是A*算法的伪代码:
```
function AStar(start, goal):
// 初始化开放列表和关闭列表
openList := [start]
closedList := []
// 初始化起始节点的代价和父节点
start.g := 0
start.h := heuristic(start, goal)
start.f := start.g + start.h
start.parent := null
while openList is not empty:
// 选择F值最小的节点
current := node with minimum f value in openList
// 找到目标节点,路径找到
if current == goal:
return constructPath(current)
// 将当前节点从开放列表移到关闭列表
remove current from openList
add current to closedList
// 遍历当前节点的邻居
for each neighbor in current.neighbors:
if neighbor in closedList:
continue
// 计算邻居节点的代价
tentative_g := current.g + distance(current, neighbor)
if neighbor not in openList or tentative_g < neighbor.g:
// 更新邻居节点的代价和父节点
neighbor.g := tentative_g
neighbor.h := heuristic(neighbor, goal)
neighbor.f := neighbor.g + neighbor.h
neighbor.parent := current
if neighbor not in openList:
// 将邻居节点加入开放列表
add neighbor to openList
// 开放列表为空,无路径可到达目标节点
return null
function constructPath(node):
path := []
while node is not null:
add node to path
node := node.parent
return reversed(path)
```
这是A*算法的基本伪代码,它采用启发式函数(heuristic function)来评估节点的优先级。这个算法在搜索路径时综合了节点的代价和预测的剩余代价,并且通过优先考虑具有较小F值的节点来选择下一个节点进行扩展。
阅读全文