给以下的代码加详细的中文注释#导入相关库 from skimage import data,color import numpy as np import matplotlib.pyplot as plt #中文显示工具函数 def set_ch(): from pylab import mpl mpl.rcParams['font.sans-serif'] = ['FangSong'] mpl.rcParams['axes.unicode_minus'] = False set_ch() D= 10 #读入图片 new_img = data.coffee() new_img = color.rgb2gray(new_img) #numpy中的傅里叶变化 f1 = np.fft.fft2(new_img) f1_shift = np.fft.fftshift(f1) #np.fft.fftshift()函数来实现平移,让直流分量在输出图像的重心 #实现理想低通滤波器 rows,cols = new_img.shape crow,ccol=int(rows/2),int(cols/2)#计算频谱中心 mask= np.zeros((rows,cols),np.uint8)#生成rows行cols的矩阵,数据格式为uint8 for i in range(rows): for j in range(cols): if np.sqrt(i*i+j*j)<=D: #将距离频谱中心小于D的部分低通信息,设置为1,属于低通滤波 mask[crow - D:crow + D, ccol - D:ccol + D] = 1 f1_shift = f1_shift*mask #傅里叶逆变换 f_ishift = np.fft.ifftshift(f1_shift) img_back=np.fft.ifft2(f_ishift) img_back=np.abs(img_back) img_back=(img_back-np.amin(img_back))/(np.amax(img_back)-np.amin(img_back)) #plt.figure(figsize=(15,8)) plt.figure() plt.subplot(121),plt.imshow(new_img,cmap='gray'),plt.title('原始图像') plt.subplot(122),plt.imshow(img_back,cmap='gray'),plt.title('滤波后图像') plt.show()
时间: 2023-06-04 22:04:19 浏览: 336
利用 Python 实现二分查找算法
def binary_search(arr, target):
"""
二分查找函数
参数:
arr: 有序数组(从小到大排列)
target: 目标元素
返回值:
如果找到目标元素,返回其下标;如果没找到,返回 -1。
"""
# 定义左右边界
left = 0
right = len(arr) - 1
# 当左边界小于等于右边界时,继续循环
while left <= right:
# 计算中间位置
mid = (left + right) // 2
# 如果目标元素在中间位置左边,缩小右边界
if arr[mid] > target:
right = mid - 1
# 如果目标元素在中间位置右边,扩大左边界
elif arr[mid] < target:
left = mid + 1
# 如果目标元素就是中间位置,直接返回下标
else:
return mid
# 如果左边界大于右边界,说明没找到,返回 -1
return -1
相关问题
import numpy as np import scipy.signal as signal import scipy.io.wavfile as wavfile import matplotlib.pyplot as plt # 读取音频文件 rate, data = wavfile.read("shengyin.wav") # 将音频数据转换为单声道 if len(data.shape) > 1: data = np.mean(data, axis=1) # 计算功率谱密度 f, Pxx = signal.periodogram(data, fs=rate) # 绘制功率谱曲线图 plt.semilogy(f, Pxx) plt.xlabel("Frequency (Hz)") plt.ylabel("Power Spectral Density (dB/Hz)") plt.show() 改进这个代码
这代码已经可以完成读取音频文件,将音频数据转换为单声道,计算功率谱密度和绘制功率谱曲线图的功能。以下是可能的改进方案:
1. 添加注释和文档字符串,以提高代码的可读性和可维护性。
2. 添加错误处理来捕获可能出现的异常情况,例如无法读取文件或计算功率谱密度失败。可以使用 try-except 语句来处理这些异常情况。
3. 对绘制的图形进行美化,例如添加图例、调整坐标轴范围和标签、更改线条颜色和样式等。
4. 如果需要,可以添加其他音频信号处理功能,例如滤波、降噪或特征提取等。
5. 将代码封装成一个函数,以便在其他程序中重复使用。可以添加输入参数来控制音频文件路径、采样率、计算功率谱密度的方法等。
6. 添加测试用例以确保代码的正确性和稳定性。可以使用 Python 的 unittest 模块来编写测试用例。
# General imports import numpy as np import pandas as pd import matplotlib.pyplot as plt # Generating data X = np.random.randn(100,1) c = np.random.uniform(-10,10,(100,)) # adding another linear column X = np.hstack((X, 4*X)) Y = (4*X[:,1] + c) plt.scatter(X[:, 0], Y) plt.show() plt.scatter(X[:, 1], Y) plt.show() # Applying linear reg from sklearn.linear_model import LinearRegression regressor = LinearRegression().fit(X, Y) # Checking the accuracy from sklearn.metrics import r2_score print(r2_score(regressor.predict(X), Y)
这段代码实现了以下功能:
1. 导入所需的库:`numpy`、`pandas`、`matplotlib.pyplot`。
2. 生成随机数据:使用 `numpy.random.randn()` 生成一个形状为 (100, 1) 的随机数矩阵 `X`,再使用 `numpy.random.uniform()` 生成一个形状为 (100,) 的在 -10 到 10 范围内的均匀分布随机数数组 `c`。
3. 添加另一个线性列:将 `X` 矩阵与 4 倍的 `X` 水平堆叠,生成新的 `X` 矩阵。
4. 计算目标变量 `Y`:根据线性关系 Y = 4*X[:,1] + c 计算目标变量 `Y`。
5. 可视化散点图:使用 `matplotlib.pyplot.scatter()` 分别绘制 `X[:,0]` 和 `X[:,1]` 与 `Y` 的散点图。
6. 应用线性回归:导入 `LinearRegression` 类并实例化一个回归器对象 `regressor`,然后使用 `fit()` 方法拟合数据。
7. 检查准确性:导入 `r2_score` 函数,使用回归器对象的 `predict()` 方法预测结果并计算 R² 分数,最后使用 `print()` 打印出 R² 分数。
请注意,这段代码中的注释提供了对代码功能和意义的解释。
阅读全文