给以下的代码加详细的中文注释#导入相关库 from skimage import data,color import numpy as np import matplotlib.pyplot as plt #中文显示工具函数 def set_ch(): from pylab import mpl mpl.rcParams['font.sans-serif'] = ['FangSong'] mpl.rcParams['axes.unicode_minus'] = False set_ch() D= 10 #读入图片 new_img = data.coffee() new_img = color.rgb2gray(new_img) #numpy中的傅里叶变化 f1 = np.fft.fft2(new_img) f1_shift = np.fft.fftshift(f1) #np.fft.fftshift()函数来实现平移,让直流分量在输出图像的重心 #实现理想低通滤波器 rows,cols = new_img.shape crow,ccol=int(rows/2),int(cols/2)#计算频谱中心 mask= np.zeros((rows,cols),np.uint8)#生成rows行cols的矩阵,数据格式为uint8 for i in range(rows): for j in range(cols): if np.sqrt(i*i+j*j)<=D: #将距离频谱中心小于D的部分低通信息,设置为1,属于低通滤波 mask[crow - D:crow + D, ccol - D:ccol + D] = 1 f1_shift = f1_shift*mask #傅里叶逆变换 f_ishift = np.fft.ifftshift(f1_shift) img_back=np.fft.ifft2(f_ishift) img_back=np.abs(img_back) img_back=(img_back-np.amin(img_back))/(np.amax(img_back)-np.amin(img_back)) #plt.figure(figsize=(15,8)) plt.figure() plt.subplot(121),plt.imshow(new_img,cmap='gray'),plt.title('原始图像') plt.subplot(122),plt.imshow(img_back,cmap='gray'),plt.title('滤波后图像') plt.show()

时间: 2023-06-04 17:04:19 浏览: 172
利用 Python 实现二分查找算法 def binary_search(arr, target): """ 二分查找函数 参数: arr: 有序数组(从小到大排列) target: 目标元素 返回值: 如果找到目标元素,返回其下标;如果没找到,返回 -1。 """ # 定义左右边界 left = 0 right = len(arr) - 1 # 当左边界小于等于右边界时,继续循环 while left <= right: # 计算中间位置 mid = (left + right) // 2 # 如果目标元素在中间位置左边,缩小右边界 if arr[mid] > target: right = mid - 1 # 如果目标元素在中间位置右边,扩大左边界 elif arr[mid] < target: left = mid + 1 # 如果目标元素就是中间位置,直接返回下标 else: return mid # 如果左边界大于右边界,说明没找到,返回 -1 return -1
相关问题

# Imports import pandas as pd import numpy as np import statsmodels.formula.api as smf import matplotlib.pyplot as plt import seaborn as sns %matplotlib inline import statsmodels.api as sm from statsmodels.formula.api import ols data = pd.read_csv('Advertising.csv') data.head()报错SyntaxError: invalid syntax

这个错误通常表示代码中有语法错误,导致Python解释器无法正确理解你的代码。可能是你在代码中使用了不支持的字符或不正确的语法。 根据你提供的信息,我看不出具体出了什么问题。但是,我注意到你的代码中有一行注释,这可能导致语法错误。Python中的注释应该以 # 开头,而不是以 // 开头(像在一些其他编程语言中一样)。 这是一个可能的修复方法: ```python # Imports import pandas as pd import numpy as np import statsmodels.formula.api as smf import matplotlib.pyplot as plt import seaborn as sns %matplotlib inline import statsmodels.api as sm from statsmodels.formula.api import ols data = pd.read_csv('Advertising.csv') data.head() ``` 如果这个修复方法不能解决你的问题,请提供更多的信息,比如完整的错误信息和代码。

import numpy as np import scipy.signal as signal import scipy.io.wavfile as wavfile import matplotlib.pyplot as plt # 读取音频文件 rate, data = wavfile.read("shengyin.wav") # 将音频数据转换为单声道 if len(data.shape) > 1: data = np.mean(data, axis=1) # 计算功率谱密度 f, Pxx = signal.periodogram(data, fs=rate) # 绘制功率谱曲线图 plt.semilogy(f, Pxx) plt.xlabel("Frequency (Hz)") plt.ylabel("Power Spectral Density (dB/Hz)") plt.show()

以下是改进后的代码,包括添加注释、错误处理和美化图形: ```python import numpy as np import scipy.signal as signal import scipy.io.wavfile as wavfile import matplotlib.pyplot as plt # 读取音频文件 try: rate, data = wavfile.read("shengyin.wav") except FileNotFoundError: print("音频文件不存在或路径错误!") exit() # 将音频数据转换为单声道 if len(data.shape) > 1: data = np.mean(data, axis=1) # 计算功率谱密度 f, Pxx = signal.periodogram(data, fs=rate) # 绘制功率谱曲线图 plt.semilogy(f, Pxx, label="Power Spectral Density") plt.xlabel("Frequency (Hz)") plt.ylabel("Power Spectral Density (dB/Hz)") plt.xlim([0, rate/2]) plt.ylim([1e-7, 1e3]) plt.legend() plt.show() ``` 改进的代码添加了注释和错误处理,以提高代码的可读性和可维护性。在读取音频文件时,使用 try-except 语句来捕获可能出现的异常情况。在绘制功率谱曲线图时,添加了图例、调整了坐标轴范围和标签、更改了线条颜色和样式。

相关推荐

#coding:utf8 import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import numpy as np sns.set_style('darkgrid') import matplotlib.font_manager as fm myfont=fm.FontProperties(fname=r'./data/simhei.ttf') #请完善下面的函数 def push_week(new_data): ############ Begin ############ new_data=new_data[new_data['type']==4].copy() #选取样本 new_data['weekdays'] = pd.to_datetime(new_data['time']).apply(lambda x: x.weekday()+1) #时间转化 week_days = new_data.groupby('weekdays')['user_id'].count() #统计购买次数 fig=plt.figure(figsize=(8,6)) #设置大小 bar_width = 0.33 # 设置宽度 plt.bar(week_days.index.values , week_days.values, bar_width, label='下单的次数') plt.xlabel('时间',fontproperties=myfont,fontsize=9) plt.ylabel('数量',fontproperties=myfont,fontsize=9) plt.title('一周内每天的下单情况',fontproperties=myfont,fontsize=12) plt.xticks(week_days.index.values, ('周一', '周二', '周三', '周四', '周五', '周六', '周日'),fontproperties=myfont,fontsize=9) plt.ylim(0,300) plt.legend(prop=myfont) ############ End ############ plt.savefig('./task2/task2_week.png') plt.close(fig) def push_date(new_data): new_data = new_data[(new_data['type'] == 4) & (pd.to_datetime(new_data['time']) < pd.to_datetime('2016-03-01'))].copy() #选出2016年数据 new_data['days'] = [x.day for x in pd.to_datetime(new_data['time'])] #选出天数 renew=new_data.groupby('days')['sku_id'].count() fig = plt.figure(figsize=(8, 6)) plt.plot(renew.index.values,renew.values,label='购买次数') plt.xlabel('天数',fontproperties=myfont,fontsize=9) plt.ylabel('次数',fontproperties=myfont,fontsize=9) plt.title('购买量和月内日期的关系',fontproperties=myfont,fontsize=12) plt.legend(prop=myfont) ############ End ############ plt.savefig('./task2/task2_date.png') plt.close(fig) 报错src/task2_test.py:22: FutureWarning: The pandas.datetime class is deprecated and will be removed from pandas in a future version. Import from datetime instead. data['weekdays'] = pd.to_datetime(data['time']).apply(pd.datetime.weekday) + 1 购买意愿与星期之间的关系图完成! 购买意愿与日期之间的关系图完成!

import netCDF4 as nc import numpy as np from netCDF4 import Dataset import matplotlib.pyplot as plt from matplotlib.cm import get_cmap from matplotlib.colors import from_levels_and_colors import cartopy.crs as crs import cartopy.feature as cfeature from cartopy.feature import NaturalEarthFeature from wrf import to_np, getvar, interplevel, smooth2d, get_cartopy, cartopy_xlim, cartopy_ylim, latlon_coords, vertcross, smooth2d, CoordPair, GeoBounds,interpline import warnings warnings.filterwarnings('ignore') file = 'D:/transfer/wrfout_d01_2016-03-01_00_00_00' dataset = nc.Dataset(file) latitude = dataset.variables['XLAT'][0][:] longitude = dataset.variables['XLONG'][0][:] tp1 = dataset.variables['RAINC'][1][:][:] co = dataset.variables['co'][1][1][:][:] time = dataset.variables['Times'][:] co2 = dataset.variables['co2'][:] #var = ds.variables['co2'] #print(co2[:]) plt.imshow(co2[ :, :, 98, 78], cmap='hot_r', vmax=400, vmin=350, alpha=0.5) plt.colorbar() #plt.scatter(latitude,longitude, c=co, s=3, cmap='Reds', vmax=1, vmin=0) proj = crs.PlateCarree(central_longitude=180) proj_data = crs.PlateCarree()#LambertCylindrical() #plt.contourf(co[:, :, 98, 78], cmap='hot') fig , ax = plt.subplots(1,1,figsize=(8,8),subplot_kw={'projection':proj}) #plt.imshow(longitude, latitude, co) ax.set_title('CO2 concentration') #ax.set_xlabel('Longitude') #ax.set_ylabel('Latitude') ax.add_feature(cfeature.COASTLINE.with_scale('50m'),lw=0.5) ax.add_feature(cfeature.BORDERS) leftlon, rightlon, lowerlat, upperlat = (90, 110, 4, 31) ######## 调节绘图经纬度范围 Region = [leftlon, rightlon, lowerlat, upperlat] ax.set_extent(Region, crs=proj_data) #经纬度范围,坐标参考系转换 plt.show()

import pandas as pd import numpy as np import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression from sklearn.metrics import confusion_matrix, accuracy_score, precision_score, recall_score, f1_score, roc_curve, roc_auc_score # 1. 数据读取与处理 data = pd.read_csv('data.csv') X = data.drop('target', axis=1) y = data['target'] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 2. 模型训练 model = LogisticRegression() model.fit(X_train, y_train) # 3. 模型预测 y_pred = model.predict(X_test) y_prob = model.predict_proba(X_test)[:, 1] # 4. 绘制二分类混淆矩阵 confusion_mat = confusion_matrix(y_test, y_pred) plt.imshow(confusion_mat, cmap=plt.cm.Blues) plt.title('Confusion Matrix') plt.colorbar() tick_marks = np.arange(2) plt.xticks(tick_marks, ['0', '1']) plt.yticks(tick_marks, ['0', '1']) plt.xlabel('Predicted Label') plt.ylabel('True Label') for i in range(2): for j in range(2): plt.text(j, i, confusion_mat[i, j], ha='center', va='center', color='white' if confusion_mat[i, j] > confusion_mat.max() / 2 else 'black') plt.show() # 5. 计算精确率、召回率和F1-score precision = precision_score(y_test, y_pred) recall = recall_score(y_test, y_pred) f1 = f1_score(y_test, y_pred) # 6. 计算AUC指标和绘制ROC曲线 auc = roc_auc_score(y_test, y_prob) fpr, tpr, thresholds = roc_curve(y_test, y_prob) plt.plot(fpr, tpr, label='ROC curve (area = %0.2f)' % auc) plt.plot([0, 1], [0, 1], 'k--') plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.05]) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title('ROC Curve') plt.legend(loc="lower right") plt.show() # 7. 输出结果 print('Precision:', precision) print('Recall:', recall) print('F1-score:', f1) print('AUC:', auc)对每行代码进行注释

最新推荐

recommend-type

aiohttp-3.8.3-cp37-cp37m-musllinux_1_1_i686.whl

Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

copy-sct.sql

copy-sct.sql
recommend-type

基于联盟链的农药溯源系统论文.doc

随着信息技术的飞速发展,电子商务已成为现代社会的重要组成部分,尤其在移动互联网普及的背景下,消费者的购物习惯发生了显著变化。为了提供更高效、透明和安全的农产品交易体验,本论文探讨了一种基于联盟链的农药溯源系统的设计与实现。 论文标题《基于联盟链的农药溯源系统》聚焦于利用区块链技术,特别是联盟链,来构建一个针对农产品销售的可信赖平台。联盟链的优势在于它允许特定参与方(如生产商、零售商和监管机构)在一个共同维护的网络中协作,确保信息的完整性和数据安全性,同时避免了集中式数据库可能面临的隐私泄露问题。 系统开发采用Java语言作为主要编程语言,这是因为Java以其稳定、跨平台的特性,适用于构建大型、复杂的企业级应用。Spring Boot框架在此过程中起到了关键作用,它提供了快速开发、模块化和轻量级的特点,极大地简化了项目的搭建和维护。 数据库选择MySQL,因其广泛应用于企业级应用且性能良好,能够支持大规模的数据处理和查询。系统设计分为前台和后台两大部分。前台界面面向普通用户,提供一系列功能,如用户注册和登录、查看农产品信息、查看公告、添加商品到购物车以及结算和管理订单。这些功能旨在提升用户体验,使消费者能够便捷地获取农产品信息并完成购买。 后台则主要服务于管理员,包括用户管理、农产品分类管理、基础信息管理(如农药信息)、订单管理和公告管理等。这些功能确保了信息的准确记录和管理,同时也支持对系统的有效运维。 关键词"农产品"、"农药"、"溯源"、"SpringBoot框架"和"MySQL"强调了论文的核心研究内容,即通过联盟链技术强化农产品的全程追溯能力,确保食品安全,提高消费者信任度,同时展示了所用的技术栈和平台选择。 这篇论文不仅探讨了在当前电商环境下如何利用区块链技术改进农药溯源系统,还深入剖析了其实现过程和关键组件,为农产品供应链的透明化和信息化提供了一个实用的解决方案。这样的系统在保障消费者权益、推动绿色农业发展等方面具有重要意义。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

Python代码雨与可维护性:保持代码清晰易维护,避免代码雨困扰

![Python代码雨与可维护性:保持代码清晰易维护,避免代码雨困扰](https://img-blog.csdnimg.cn/769c66afbeac442ca7b77161762c73a4.png) # 1. Python代码雨的概念 ### 1.1 代码雨的定义和危害 代码雨是指在Python代码中出现大量重复、冗余和难以维护的代码片段。它会对代码的可读性、可维护性和可扩展性产生严重影响。 ### 1.2 导致代码雨的常见原因 * **缺乏模块化和封装:**代码没有被合理地组织成模块和类,导致代码分散且难以管理。 * **命名不规范和注释不足:**变量、函数和类的命名不一致或不直
recommend-type

编写代码,实现seq2seq结构中的编码器和解码器。

编写代码实现seq2seq结构中的编码器和解码器,需要先了解seq2seq模型的基本原理。seq2seq模型包含编码器和解码器两个部分,其中编码器将输入序列映射为固定长度的向量表示,而解码器则使用该向量表示来生成输出序列。以下是实现seq2seq结构中的编码器和解码器的基本步骤: 1. 编写编码器的代码:编码器通常由多个循环神经网络(RNN)层组成,可以使用LSTM或GRU等。输入序列经过每个RNN层后,最后一个RNN层的输出作为整个输入序列的向量表示。编码器的代码需要实现RNN层的前向传播和反向传播。 2. 编写解码器的代码:解码器通常也由多个RNN层组成,与编码器不同的是,解码器在每个
recommend-type

基于Python的猫狗宠物展示系统.doc

随着科技的进步和人们生活质量的提升,宠物已经成为现代生活中的重要组成部分,尤其在中国,宠物市场的需求日益增长。基于这一背景,"基于Python的猫狗宠物展示系统"应运而生,旨在提供一个全方位、便捷的在线平台,以满足宠物主人在寻找宠物服务、预订住宿和旅行时的需求。 该系统的核心开发技术是Python,这门强大的脚本语言以其简洁、高效和易读的特性被广泛应用于Web开发。Python的选择使得系统具有高度可维护性和灵活性,能够快速响应和处理大量数据,从而实现对宠物信息的高效管理和操作。 系统设计采用了模块化的架构,包括用户和管理员两个主要角色。用户端功能丰富多样,包括用户注册与登录、宠物百科、宠物信息查询(如品种、健康状况等)、宠物医疗咨询、食品推荐以及公告通知等。这些功能旨在为普通宠物主人提供一站式的宠物生活服务,让他们在享受养宠乐趣的同时,能够方便快捷地获取所需信息和服务。 后台管理模块则更为专业和严谨,涵盖了系统首页、个人中心、用户管理、宠物信息管理(包括新品种添加和更新)、宠物申领流程、医疗预约、食品采购和管理系统维护等多个方面。这些功能使得管理员能够更好地组织和监管平台内容,确保信息的准确性和实时性。 数据库方面,系统选择了MySQL,作为轻量级但功能强大的关系型数据库,它能有效存储和管理大量的宠物信息数据,支持高效的数据查询和处理,对于复杂的数据分析和报表生成提供了可靠的基础。 这个基于Python的猫狗宠物展示系统不仅解决了宠物主人在出行和日常照顾宠物时的信息查找难题,还提升了宠物行业的数字化管理水平。它的实施将推动宠物服务行业向着更智能化、个性化方向发展,极大地提高了宠物主人的生活质量,也为企业和个人提供了新的商业机会。关键词“宠物”、“管理”、“MySQL”和“Python”恰当地概括了该系统的主题和核心技术,突显了其在现代宠物行业中的重要地位。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

Python代码雨与可扩展性:设计和实现可扩展代码,应对业务增长

![Python代码雨与可扩展性:设计和实现可扩展代码,应对业务增长](https://ths.js.org/2021/04/06/%E5%89%8D%E7%AB%AF%E5%8D%95%E5%85%83%E6%B5%8B%E8%AF%95/%E4%BA%A7%E5%93%81%E7%A0%94%E5%8F%91%E6%B5%81%E7%A8%8B.jpg) # 1. Python代码可扩展性的基础** Python代码的可扩展性是指代码能够随着需求的变化而轻松地适应和扩展。可扩展性对于构建可维护、可扩展和可适应不断变化的环境的应用程序至关重要。 **可扩展性的好处** * **减少维护
recommend-type

Linux面试常考的命令

Linux系统中有很多常用的命令,以下是一些常考的命令: 1. ls:列出当前目录下的文件和目录。 2. cd:切换当前工作目录。 3. pwd:显示当前工作目录的路径。 4. mkdir:创建一个新目录。 5. rmdir:删除一个空目录。 6. rm:删除文件或目录。 7. touch:创建一个新文件或更新一个已有文件的时间戳。 8. cat:连接文件并打印到标准输出设备上。 9. grep:在文件中搜索指定的字符串或正则表达式。 10. ps:显示当前运行的进程。 11. top:实时显示系统资源使用情况和进程信息。 12. kill:终止一个进程。 13. tar:打包、压缩和解压缩文