检查以下LSTM正向传播的代码矩阵大小错误的地方:# 前向LSTM outputs_forward = [] h_forward_new = torch.from_numpy(h_forward) c_forward_new = torch.from_numpy(c_forward) print("h_forward_new:", h_forward.shape) for t in range(input.size(0)): x = input[t] i = torch.sigmoid(torch.matmul(x, self.W_i_forward) + torch.matmul(h_forward_new[-1], self.U_i_forward) + self.b_i_forward) f = torch.sigmoid(torch.matmul(x, self.W_f_forward) + torch.matmul(h_forward_new[-1], self.U_f_forward) + self.b_f_forward) c_tilde = torch.tanh(torch.matmul(x, self.W_c_forward) + torch.matmul(h_forward_new[-1], self.U_c_forward) + self.b_c_forward) c_forward_new = f * c_forward_new[-1] + i * c_tilde o = torch.matmul(x, self.W_o_forward) + torch.matmul(h_forward_new[-1], self.U_o_forward) + self.b_o_forward o = torch.sigmoid(o) h_forward_new = o * torch.tanh(c_forward_new[-1]) outputs_forward.append(h_forward_new) h_forward_new = torch.cat([h_forward_new[1:], h_forward_new[-1].unsqueeze(0)]) c_forward_new = torch.cat([c_forward_new[1:], c_forward_new[-1].unsqueeze(0)]) h_forward = h_forward_new c_forward = c_forward_new
时间: 2024-03-04 14:53:37 浏览: 79
在这段代码中,有几个地方可能出现矩阵大小错误:
1. 在打印语句 `print("h_forward_new:", h_forward.shape)` 中,如果 `h_forward` 的形状无法满足 `print` 函数的要求,就会出现矩阵大小错误。你应该检查 `h_forward` 的形状是否正确,并确保它与你的预期相符。
2. 在循环中,如果输入张量 `input` 的形状与 LSTM 模型的权重矩阵的形状不匹配,就会出现矩阵大小错误。你需要检查 `input` 的形状是否正确,并确保它与你的预期相符。
3. 在计算 LSTM 的各种门限和状态时,如果权重矩阵的形状与输入数据的形状不匹配,就会出现矩阵大小错误。你应该检查每个权重矩阵的形状是否正确,并确保它们与你的预期相符。
4. 在计算输出时,如果状态张量的形状与权重矩阵的形状不匹配,就会出现矩阵大小错误。你需要检查状态张量的形状是否正确,并确保它与你的预期相符。
5. 在将输出添加到 `outputs_forward` 列表中时,如果张量的形状与之前的张量不匹配,就会出现矩阵大小错误。你需要检查每个输出张量的形状是否正确,并确保它们与你的预期相符。
总之,要解决这个问题,你需要仔细检查每个张量的形状,确保它们与你的预期相符。如果某个张量的形状不正确,你需要修改代码以使其匹配你的预期。
相关问题
这段代码无法求导自动反向传播,请你找出bug:# 将前向和反向LSTM的输出拼接起来 outputs_forward = torch.stack(outputs_forward) outputs_backward = torch.stack(outputs_backward) print(outputs_forward.shape) print(outputs_backward.shape) output = torch.cat((outputs_forward,outputs_backward), dim=-1) # 将前向和反向LSTM的隐状态和细胞状态拼接起来 h = torch.cat((h_forward, h_backward), dim=0) c = torch.cat((c_forward, c_backward), dim=0) # 对输出进行dropout output = self.dropout_layer(output) # 对输出进行转换(batch_first=True时需要) if self.batch_first: output = output.transpose(0, 1) return output, (h, c)
这段代码中没有明显的 bug,但是需要注意以下几点:
1. 在使用 LSTM 时,应该在最后一个时间步上取出 LSTM 的输出作为最终的输出,而不是将所有时间步上的输出拼接起来。因此,应该在函数最后加上 `output = output[-1]`。
2. 在将前向和反向 LSTM 的隐状态和细胞状态拼接起来时,应该按照时间步的顺序拼接,而不是按照 batch 中样本的顺序拼接。因此,应该将 `dim=0` 修改为 `dim=1`。
修改后的代码如下:
```
# 将前向和反向LSTM的输出拼接起来
outputs_forward = torch.stack(outputs_forward)
outputs_backward = torch.stack(outputs_backward)
output = torch.cat((outputs_forward, outputs_backward), dim=-1)
# 将前向和反向LSTM的隐状态和细胞状态拼接起来
h = torch.cat((h_forward, h_backward), dim=1)
c = torch.cat((c_forward, c_backward), dim=1)
# 对输出进行dropout
output = self.dropout_layer(output)
# 取最后一个时间步的输出作为最终的输出
output = output[-1]
# 对输出进行转换(batch_first=True时需要)
if self.batch_first:
output = output.unsqueeze(0)
output = output.transpose(0, 1)
return output, (h, c)
```
以下代码存在不可以自动反向传播的bug,为什么: # 前向LSTM outputs_forward = [] for t in range(input.size(0)): x = input[t] i = torch.sigmoid(torch.matmul(x, self.W_i_forward) + torch.matmul(h_forward[-1], self.U_i_forward) + self.b_i_forward) f = torch.sigmoid(torch.matmul(x, self.W_f_forward) + torch.matmul(h_forward[-1], self.U_f_forward) + self.b_f_forward) c_tilde = torch.tanh(torch.matmul(x, self.W_c_forward) + torch.matmul(h_forward[-1], self.U_c_forward) + self.b_c_forward) c_forward[-1] = f * c_forward[-1] + i * c_tilde o = torch.matmul(x, self.W_o_forward) + torch.matmul(h_forward[-1], self.U_o_forward) + self.b_o_forward o = torch.sigmoid(o) h_forward[-1] = o * torch.tanh(c_forward[-1]) outputs_forward.append(h_forward[-1])
这段代码存在一个不能自动反向传播的bug,原因是在循环中对h_forward和c_forward的值进行了修改。在PyTorch中,只有被标记为requires_grad=True的张量才能够自动求梯度,而对张量进行in-place操作会导致梯度信息丢失,从而无法进行自动求梯度。
具体来说,在这段代码中,对h_forward和c_forward的修改会导致后续的梯度计算出现问题,从而无法进行自动反向传播。解决这个问题的方法是创建一个新的变量来保存h_forward和c_forward的值,而不是直接修改它们的值。修改后的代码如下:
```python
# 前向LSTM
outputs_forward = []
h_forward_new = h_forward.clone()
c_forward_new = c_forward.clone()
for t in range(input.size(0)):
x = input[t]
i = torch.sigmoid(torch.matmul(x, self.W_i_forward) + torch.matmul(h_forward_new[-1], self.U_i_forward) + self.b_i_forward)
f = torch.sigmoid(torch.matmul(x, self.W_f_forward) + torch.matmul(h_forward_new[-1], self.U_f_forward) + self.b_f_forward)
c_tilde = torch.tanh(torch.matmul(x, self.W_c_forward) + torch.matmul(h_forward_new[-1], self.U_c_forward) + self.b_c_forward)
c_forward_new[-1] = f * c_forward_new[-1] + i * c_tilde
o = torch.matmul(x, self.W_o_forward) + torch.matmul(h_forward_new[-1], self.U_o_forward) + self.b_o_forward
o = torch.sigmoid(o)
h_forward_new[-1] = o * torch.tanh(c_forward_new[-1])
outputs_forward.append(h_forward_new[-1])
h_forward_new = torch.cat([h_forward_new[1:], h_forward_new[-1].unsqueeze(0)])
c_forward_new = torch.cat([c_forward_new[1:], c_forward_new[-1].unsqueeze(0)])
h_forward = h_forward_new
c_forward = c_forward_new
```
在修改后的代码中,我们先创建了新的变量h_forward_new和c_forward_new来保存h_forward和c_forward的值,并使用clone()方法复制张量的值。然后,在循环中,我们使用h_forward_new和c_forward_new来进行前向计算,并将计算得到的输出保存到outputs_forward中。最后,我们使用torch.cat()方法来更新h_forward_new和c_forward_new的值,并将其赋值给h_forward和c_forward。这样就可以避免in-place操作导致的梯度丢失问题。
阅读全文